(* Title: Pure/subgoal.ML
Author: Makarius
Tactical operations depending on local subgoal structure.
*)
signature BASIC_SUBGOAL =
sig
val SUBPROOF:
({context: Proof.context, schematics: ctyp list * cterm list,
params: cterm list, asms: cterm list, concl: cterm,
prems: thm list} -> tactic) -> Proof.context -> int -> tactic
end
signature SUBGOAL =
sig
include BASIC_SUBGOAL
val focus: Proof.context -> int -> thm ->
{context: Proof.context, schematics: ctyp list * cterm list,
params: cterm list, asms: cterm list, concl: cterm, prems: thm list} * thm
end;
structure Subgoal: SUBGOAL =
struct
(* canonical proof decomposition -- similar to fix/assume/show *)
fun focus ctxt i st =
let
val ((schematics, [st']), ctxt') =
Variable.import_thms true [MetaSimplifier.norm_hhf_protect st] ctxt;
val ((params, goal), ctxt'') = Variable.focus_subgoal i st' ctxt';
val asms = Drule.strip_imp_prems goal;
val concl = Drule.strip_imp_concl goal;
val (prems, context) = Assumption.add_assumes asms ctxt'';
in
({context = context, schematics = schematics, params = params,
asms = asms, concl = concl, prems = prems}, Goal.init concl)
end;
fun SUBPROOF tac ctxt i st =
if Thm.nprems_of st < i then Seq.empty
else
let
val (args as {context, params, ...}, st') = focus ctxt i st;
fun export_closed th =
let
val (th' :: params') = ProofContext.export context ctxt (th :: map Drule.mk_term params);
val vs = map (Thm.dest_arg o Drule.strip_imp_concl o Thm.cprop_of) params';
in Drule.forall_intr_list vs th' end;
fun retrofit th = Thm.compose_no_flatten false (th, 0) i;
in Seq.lifts retrofit (Seq.map (Goal.finish #> export_closed) (tac args st')) st end
end;
structure BasicSubgoal: BASIC_SUBGOAL = Subgoal;
open BasicSubgoal;