Added an exception handler and error msg.
(* Title: hcomplex_arith.ML
Author: Jacques D. Fleuriot
Copyright: 2001 University of Edinburgh
Common factor cancellation
*)
local
open HComplex_Numeral_Simprocs
in
val rel_hcomplex_number_of = [eq_hcomplex_number_of];
structure CancelNumeralFactorCommon =
struct
val mk_coeff = mk_coeff
val dest_coeff = dest_coeff 1
val trans_tac = Real_Numeral_Simprocs.trans_tac
val norm_tac = ALLGOALS (simp_tac (HOL_ss addsimps hcomplex_minus_from_mult_simps @ mult_1s))
THEN ALLGOALS (simp_tac (HOL_ss addsimps bin_simps@hcomplex_mult_minus_simps))
THEN ALLGOALS (simp_tac (HOL_ss addsimps mult_ac))
val numeral_simp_tac =
ALLGOALS (simp_tac (HOL_ss addsimps rel_hcomplex_number_of@bin_simps))
val simplify_meta_eq = simplify_meta_eq
end
structure DivCancelNumeralFactor = CancelNumeralFactorFun
(open CancelNumeralFactorCommon
val prove_conv = Bin_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binop "HOL.divide"
val dest_bal = HOLogic.dest_bin "HOL.divide" hcomplexT
val cancel = mult_divide_cancel_left RS trans
val neg_exchanges = false
)
structure EqCancelNumeralFactor = CancelNumeralFactorFun
(open CancelNumeralFactorCommon
val prove_conv = Bin_Simprocs.prove_conv
val mk_bal = HOLogic.mk_eq
val dest_bal = HOLogic.dest_bin "op =" hcomplexT
val cancel = field_mult_cancel_left RS trans
val neg_exchanges = false
)
val hcomplex_cancel_numeral_factors_relations =
map prep_simproc
[("hcomplexeq_cancel_numeral_factor",
["(l::hcomplex) * m = n", "(l::hcomplex) = m * n"],
EqCancelNumeralFactor.proc)];
val hcomplex_cancel_numeral_factors_divide = prep_simproc
("hcomplexdiv_cancel_numeral_factor",
["((l::hcomplex) * m) / n", "(l::hcomplex) / (m * n)",
"((number_of v)::hcomplex) / (number_of w)"],
DivCancelNumeralFactor.proc);
val hcomplex_cancel_numeral_factors =
hcomplex_cancel_numeral_factors_relations @
[hcomplex_cancel_numeral_factors_divide];
end;
Addsimprocs hcomplex_cancel_numeral_factors;
(*examples:
print_depth 22;
set timing;
set trace_simp;
fun test s = (Goal s; by (Simp_tac 1));
test "#9*x = #12 * (y::hcomplex)";
test "(#9*x) / (#12 * (y::hcomplex)) = z";
test "#-99*x = #132 * (y::hcomplex)";
test "#999*x = #-396 * (y::hcomplex)";
test "(#999*x) / (#-396 * (y::hcomplex)) = z";
test "#-99*x = #-81 * (y::hcomplex)";
test "(#-99*x) / (#-81 * (y::hcomplex)) = z";
test "#-2 * x = #-1 * (y::hcomplex)";
test "#-2 * x = -(y::hcomplex)";
test "(#-2 * x) / (#-1 * (y::hcomplex)) = z";
*)
(** Declarations for ExtractCommonTerm **)
local
open HComplex_Numeral_Simprocs
in
structure CancelFactorCommon =
struct
val mk_sum = long_mk_prod
val dest_sum = dest_prod
val mk_coeff = mk_coeff
val dest_coeff = dest_coeff
val find_first = find_first []
val trans_tac = Real_Numeral_Simprocs.trans_tac
val norm_tac = ALLGOALS (simp_tac (HOL_ss addsimps mult_1s@mult_ac))
end;
structure EqCancelFactor = ExtractCommonTermFun
(open CancelFactorCommon
val prove_conv = Bin_Simprocs.prove_conv
val mk_bal = HOLogic.mk_eq
val dest_bal = HOLogic.dest_bin "op =" hcomplexT
val simplify_meta_eq = cancel_simplify_meta_eq field_mult_cancel_left
);
structure DivideCancelFactor = ExtractCommonTermFun
(open CancelFactorCommon
val prove_conv = Bin_Simprocs.prove_conv
val mk_bal = HOLogic.mk_binop "HOL.divide"
val dest_bal = HOLogic.dest_bin "HOL.divide" hcomplexT
val simplify_meta_eq = cancel_simplify_meta_eq mult_divide_cancel_eq_if
);
val hcomplex_cancel_factor =
map prep_simproc
[("hcomplex_eq_cancel_factor", ["(l::hcomplex) * m = n", "(l::hcomplex) = m * n"],
EqCancelFactor.proc),
("hcomplex_divide_cancel_factor", ["((l::hcomplex) * m) / n", "(l::hcomplex) / (m * n)"],
DivideCancelFactor.proc)];
end;
Addsimprocs hcomplex_cancel_factor;
(*examples:
print_depth 22;
set timing;
set trace_simp;
fun test s = (Goal s; by (Asm_simp_tac 1));
test "x*k = k*(y::hcomplex)";
test "k = k*(y::hcomplex)";
test "a*(b*c) = (b::hcomplex)";
test "a*(b*c) = d*(b::hcomplex)*(x*a)";
test "(x*k) / (k*(y::hcomplex)) = (uu::hcomplex)";
test "(k) / (k*(y::hcomplex)) = (uu::hcomplex)";
test "(a*(b*c)) / ((b::hcomplex)) = (uu::hcomplex)";
test "(a*(b*c)) / (d*(b::hcomplex)*(x*a)) = (uu::hcomplex)";
(*FIXME: what do we do about this?*)
test "a*(b*c)/(y*z) = d*(b::hcomplex)*(x*a)/z";
*)