src/HOL/Integ/IntArith.thy
author nipkow
Sun, 25 Jan 2004 00:42:22 +0100
changeset 14360 e654599b114e
parent 14353 79f9fbef9106
child 14365 3d4df8c166ae
permissions -rw-r--r--
Added an exception handler and error msg.

(*  Title:      HOL/Integ/IntArith.thy
    ID:         $Id$
    Authors:    Larry Paulson and Tobias Nipkow
*)

header {* Integer arithmetic *}

theory IntArith = Bin
files ("int_arith1.ML"):


subsection{*Inequality Reasoning for the Arithmetic Simproc*}

lemma zless_imp_add1_zle: "w<z ==> w + (1::int) \<le> z"
  proof (auto simp add: zle_def zless_iff_Suc_zadd) 
  fix m n
  assume "w + 1 = w + (1 + int m) + (1 + int n)"
  hence "(w + 1) + (1 + int (m + n)) = (w + 1) + 0" 
    by (simp add: add_ac zadd_int [symmetric])
  hence "int (Suc(m+n)) = 0" 
    by (simp only: Ring_and_Field.add_left_cancel int_Suc)
  thus False by (simp only: int_eq_0_conv)
  qed

use "int_arith1.ML"
setup int_arith_setup


subsection{*More inequality reasoning*}

lemma zless_add1_eq: "(w < z + (1::int)) = (w<z | w=z)"
by arith

lemma add1_zle_eq: "(w + (1::int) \<le> z) = (w<z)"
by arith

lemma zle_diff1_eq [simp]: "(w \<le> z - (1::int)) = (w<(z::int))"
by arith

lemma zle_add1_eq_le [simp]: "(w < z + 1) = (w\<le>(z::int))"
by arith

lemma zadd_left_cancel0 [simp]: "(z = z + w) = (w = (0::int))"
by arith


subsection{*The Functions @{term nat} and @{term int}*}

lemma nonneg_eq_int: "[| 0 \<le> z;  !!m. z = int m ==> P |] ==> P"
by (blast dest: nat_0_le sym)

lemma nat_eq_iff: "(nat w = m) = (if 0 \<le> w then w = int m else m=0)"
by auto

lemma nat_eq_iff2: "(m = nat w) = (if 0 \<le> w then w = int m else m=0)"
by auto

lemma nat_less_iff: "0 \<le> w ==> (nat w < m) = (w < int m)"
apply (rule iffI)
apply (erule nat_0_le [THEN subst])
apply (simp_all del: zless_int add: zless_int [symmetric]) 
done

lemma int_eq_iff: "(int m = z) = (m = nat z & 0 \<le> z)"
by (auto simp add: nat_eq_iff2)


text{*Simplify the terms @{term "int 0"}, @{term "int(Suc 0)"} and
  @{term "w + - z"}*}
declare Zero_int_def [symmetric, simp]
declare One_int_def [symmetric, simp]

text{*cooper.ML refers to this theorem*}
lemmas zdiff_def_symmetric = zdiff_def [symmetric, simp]

lemma nat_0: "nat 0 = 0"
by (simp add: nat_eq_iff)

lemma nat_1: "nat 1 = Suc 0"
by (subst nat_eq_iff, simp)

lemma nat_2: "nat 2 = Suc (Suc 0)"
by (subst nat_eq_iff, simp)

lemma nat_less_eq_zless: "0 \<le> w ==> (nat w < nat z) = (w<z)"
apply (case_tac "neg z")
apply (auto simp add: nat_less_iff)
apply (auto intro: zless_trans simp add: neg_eq_less_0 zle_def)
done

lemma nat_le_eq_zle: "0 < w | 0 \<le> z ==> (nat w \<le> nat z) = (w\<le>z)"
by (auto simp add: linorder_not_less [symmetric] zless_nat_conj)


text{*This simplifies expressions of the form @{term "int n = z"} where
      z is an integer literal.*}
declare int_eq_iff [of _ "number_of v", standard, simp]

lemma int_nat_eq [simp]: "int (nat z) = (if 0 \<le> z then z else 0)"
  by simp

lemma split_nat [arith_split]:
  "P(nat(i::int)) = ((\<forall>n. i = int n \<longrightarrow> P n) & (i < 0 \<longrightarrow> P 0))"
  (is "?P = (?L & ?R)")
proof (cases "i < 0")
  case True thus ?thesis by simp
next
  case False
  have "?P = ?L"
  proof
    assume ?P thus ?L using False by clarsimp
  next
    assume ?L thus ?P using False by simp
  qed
  with False show ?thesis by simp
qed

subsubsection "Induction principles for int"

                     (* `set:int': dummy construction *)
theorem int_ge_induct[case_names base step,induct set:int]:
  assumes ge: "k \<le> (i::int)" and
        base: "P(k)" and
        step: "\<And>i. \<lbrakk>k \<le> i; P i\<rbrakk> \<Longrightarrow> P(i+1)"
  shows "P i"
proof -
  { fix n have "\<And>i::int. n = nat(i-k) \<Longrightarrow> k \<le> i \<Longrightarrow> P i"
    proof (induct n)
      case 0
      hence "i = k" by arith
      thus "P i" using base by simp
    next
      case (Suc n)
      hence "n = nat((i - 1) - k)" by arith
      moreover
      have ki1: "k \<le> i - 1" using Suc.prems by arith
      ultimately
      have "P(i - 1)" by(rule Suc.hyps)
      from step[OF ki1 this] show ?case by simp
    qed
  }
  from this ge show ?thesis by fast
qed

                     (* `set:int': dummy construction *)
theorem int_gr_induct[case_names base step,induct set:int]:
  assumes gr: "k < (i::int)" and
        base: "P(k+1)" and
        step: "\<And>i. \<lbrakk>k < i; P i\<rbrakk> \<Longrightarrow> P(i+1)"
  shows "P i"
apply(rule int_ge_induct[of "k + 1"])
  using gr apply arith
 apply(rule base)
apply (rule step, simp+)
done

theorem int_le_induct[consumes 1,case_names base step]:
  assumes le: "i \<le> (k::int)" and
        base: "P(k)" and
        step: "\<And>i. \<lbrakk>i \<le> k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
  shows "P i"
proof -
  { fix n have "\<And>i::int. n = nat(k-i) \<Longrightarrow> i \<le> k \<Longrightarrow> P i"
    proof (induct n)
      case 0
      hence "i = k" by arith
      thus "P i" using base by simp
    next
      case (Suc n)
      hence "n = nat(k - (i+1))" by arith
      moreover
      have ki1: "i + 1 \<le> k" using Suc.prems by arith
      ultimately
      have "P(i+1)" by(rule Suc.hyps)
      from step[OF ki1 this] show ?case by simp
    qed
  }
  from this le show ?thesis by fast
qed

theorem int_less_induct[consumes 1,case_names base step]:
  assumes less: "(i::int) < k" and
        base: "P(k - 1)" and
        step: "\<And>i. \<lbrakk>i < k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
  shows "P i"
apply(rule int_le_induct[of _ "k - 1"])
  using less apply arith
 apply(rule base)
apply (rule step, simp+)
done

subsection{*Intermediate value theorems*}

lemma int_val_lemma:
     "(\<forall>i<n::nat. abs(f(i+1) - f i) \<le> 1) -->  
      f 0 \<le> k --> k \<le> f n --> (\<exists>i \<le> n. f i = (k::int))"
apply (induct_tac "n", simp)
apply (intro strip)
apply (erule impE, simp)
apply (erule_tac x = n in allE, simp)
apply (case_tac "k = f (n+1) ")
 apply force
apply (erule impE)
 apply (simp add: zabs_def split add: split_if_asm)
apply (blast intro: le_SucI)
done

lemmas nat0_intermed_int_val = int_val_lemma [rule_format (no_asm)]

lemma nat_intermed_int_val:
     "[| \<forall>i. m \<le> i & i < n --> abs(f(i + 1::nat) - f i) \<le> 1; m < n;  
         f m \<le> k; k \<le> f n |] ==> ? i. m \<le> i & i \<le> n & f i = (k::int)"
apply (cut_tac n = "n-m" and f = "%i. f (i+m) " and k = k 
       in int_val_lemma)
apply simp
apply (erule impE)
 apply (intro strip)
 apply (erule_tac x = "i+m" in allE, arith)
apply (erule exE)
apply (rule_tac x = "i+m" in exI, arith)
done


subsection{*Products and 1, by T. M. Rasmussen*}

lemma zmult_eq_self_iff: "(m = m*(n::int)) = (n = 1 | m = 0)"
apply auto
apply (subgoal_tac "m*1 = m*n")
apply (drule zmult_cancel1 [THEN iffD1], auto)
done

lemma zless_1_zmult: "[| 1 < m; 1 < n |] ==> 1 < m*(n::int)"
apply (rule_tac y = "1*n" in order_less_trans)
apply (rule_tac [2] zmult_zless_mono1)
apply (simp_all (no_asm_simp))
done

lemma pos_zmult_eq_1_iff: "0 < (m::int) ==> (m * n = 1) = (m = 1 & n = 1)"
apply auto
apply (case_tac "m=1")
apply (case_tac [2] "n=1")
apply (case_tac [4] "m=1")
apply (case_tac [5] "n=1", auto)
apply (tactic"distinct_subgoals_tac")
apply (subgoal_tac "1<m*n", simp)
apply (rule zless_1_zmult, arith)
apply (subgoal_tac "0<n", arith)
apply (subgoal_tac "0<m*n")
apply (drule zero_less_mult_iff [THEN iffD1], auto)
done

lemma zmult_eq_1_iff: "(m*n = (1::int)) = ((m = 1 & n = 1) | (m = -1 & n = -1))"
apply (case_tac "0<m")
apply (simp add: pos_zmult_eq_1_iff)
apply (case_tac "m=0")
apply (simp del: number_of_reorient)
apply (subgoal_tac "0 < -m")
apply (drule_tac n = "-n" in pos_zmult_eq_1_iff, auto)
done


subsection{*More about nat*}

(*Analogous to zadd_int*)
lemma zdiff_int: "n \<le> m ==> int m - int n = int (m-n)"
by (induct m n rule: diff_induct, simp_all)

lemma nat_add_distrib:
     "[| (0::int) \<le> z;  0 \<le> z' |] ==> nat (z+z') = nat z + nat z'"
apply (rule inj_int [THEN injD])
apply (simp add: zadd_int [symmetric])
done

lemma nat_diff_distrib:
     "[| (0::int) \<le> z';  z' \<le> z |] ==> nat (z-z') = nat z - nat z'"
apply (rule inj_int [THEN injD])
apply (simp add: zdiff_int [symmetric] nat_le_eq_zle)
done

lemma nat_mult_distrib: "(0::int) \<le> z ==> nat (z*z') = nat z * nat z'"
apply (case_tac "0 \<le> z'")
apply (rule inj_int [THEN injD])
apply (simp add: zmult_int [symmetric] zero_le_mult_iff)
apply (simp add: mult_le_0_iff)
done

lemma nat_mult_distrib_neg: "z \<le> (0::int) ==> nat(z*z') = nat(-z) * nat(-z')"
apply (rule trans)
apply (rule_tac [2] nat_mult_distrib, auto)
done

lemma nat_abs_mult_distrib: "nat (abs (w * z)) = nat (abs w) * nat (abs z)"
apply (case_tac "z=0 | w=0")
apply (auto simp add: zabs_def nat_mult_distrib [symmetric] 
                      nat_mult_distrib_neg [symmetric] mult_less_0_iff)
done


ML
{*
val zle_diff1_eq = thm "zle_diff1_eq";
val zle_add1_eq_le = thm "zle_add1_eq_le";
val nonneg_eq_int = thm "nonneg_eq_int";
val nat_eq_iff = thm "nat_eq_iff";
val nat_eq_iff2 = thm "nat_eq_iff2";
val nat_less_iff = thm "nat_less_iff";
val int_eq_iff = thm "int_eq_iff";
val nat_0 = thm "nat_0";
val nat_1 = thm "nat_1";
val nat_2 = thm "nat_2";
val nat_less_eq_zless = thm "nat_less_eq_zless";
val nat_le_eq_zle = thm "nat_le_eq_zle";

val nat_intermed_int_val = thm "nat_intermed_int_val";
val zmult_eq_self_iff = thm "zmult_eq_self_iff";
val zless_1_zmult = thm "zless_1_zmult";
val pos_zmult_eq_1_iff = thm "pos_zmult_eq_1_iff";
val zmult_eq_1_iff = thm "zmult_eq_1_iff";
val nat_add_distrib = thm "nat_add_distrib";
val nat_diff_distrib = thm "nat_diff_distrib";
val nat_mult_distrib = thm "nat_mult_distrib";
val nat_mult_distrib_neg = thm "nat_mult_distrib_neg";
val nat_abs_mult_distrib = thm "nat_abs_mult_distrib";
*}

end