doc-src/Exercises/0304/a4/generated/a4.tex
author obua
Sun, 09 May 2004 23:04:36 +0200
changeset 14722 8e739a6eaf11
parent 14500 2015348ceecb
permissions -rw-r--r--
replaced apply-style proof for instance Multiset :: plus_ac0 by recommended Isar proof style

%
\begin{isabellebody}%
\def\isabellecontext{a{\isadigit{4}}}%
\isamarkupfalse%
%
\isamarkupsubsection{Natural Deduction -- Predicate Logic; Sets as Lists%
}
\isamarkuptrue%
%
\isamarkupsubsubsection{Predicate Logic Formulae%
}
\isamarkuptrue%
%
\begin{isamarkuptext}%
We are again talking about proofs in the calculus of Natural
Deduction. In addition to the rules of section~\ref{psv0304a3}, you may now also use


  \isa{exI{\isacharcolon}}~\isa{P\ x\ {\isasymLongrightarrow}\ {\isasymexists}x{\isachardot}\ P\ x}\\
  \isa{exE{\isacharcolon}}~\isa{{\isasymlbrakk}{\isasymexists}x{\isachardot}\ P\ x{\isacharsemicolon}\ {\isasymAnd}x{\isachardot}\ P\ x\ {\isasymLongrightarrow}\ Q{\isasymrbrakk}\ {\isasymLongrightarrow}\ Q}\\
  \isa{allI{\isacharcolon}}~\isa{{\isacharparenleft}{\isasymAnd}x{\isachardot}\ P\ x{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymforall}x{\isachardot}\ P\ x}\\
  \isa{allE{\isacharcolon}}~\isa{{\isasymlbrakk}{\isasymforall}x{\isachardot}\ P\ x{\isacharsemicolon}\ P\ x\ {\isasymLongrightarrow}\ R{\isasymrbrakk}\ {\isasymLongrightarrow}\ R}\\

Give a proof of the following propositions or an argument why the formula is not valid:%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isasymexists}x{\isachardot}\ {\isasymforall}y{\isachardot}\ P\ x\ y{\isacharparenright}\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymforall}y{\isachardot}\ {\isasymexists}x{\isachardot}\ P\ x\ y{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isanewline
\isamarkupfalse%
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isasymforall}x{\isachardot}\ P\ x\ {\isasymlongrightarrow}\ Q{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isacharparenleft}{\isasymexists}x{\isachardot}\ P\ x{\isacharparenright}\ {\isasymlongrightarrow}\ Q{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isanewline
\isamarkupfalse%
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}{\isasymforall}\ x{\isachardot}\ P\ x{\isacharparenright}\ \ {\isasymand}\ {\isacharparenleft}{\isasymforall}\ x{\isachardot}\ Q\ x{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isasymforall}\ x{\isachardot}\ {\isacharparenleft}P\ x\ {\isasymand}\ Q\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isanewline
\isamarkupfalse%
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}{\isasymforall}\ x{\isachardot}\ P\ x{\isacharparenright}\ {\isasymor}\ {\isacharparenleft}{\isasymforall}\ x{\isachardot}\ Q\ x{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isasymforall}\ x{\isachardot}\ {\isacharparenleft}P\ x\ {\isasymor}\ Q\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isanewline
\isamarkupfalse%
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}{\isasymexists}\ x{\isachardot}\ P\ x{\isacharparenright}\ {\isasymor}\ {\isacharparenleft}{\isasymexists}\ x{\isachardot}\ Q\ x{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isasymexists}\ x{\isachardot}\ {\isacharparenleft}P\ x\ {\isasymor}\ Q\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isanewline
\isamarkupfalse%
\isacommand{lemma}\ {\isachardoublequote}{\isasymexists}x{\isachardot}\ {\isacharparenleft}P\ x\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymforall}x{\isachardot}\ P\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\isamarkupsubsubsection{Sets as Lists%
}
\isamarkuptrue%
%
\begin{isamarkuptext}%
Finite sets can obviously be implemented by lists. In the
following, you will be asked to implement the set operations union,
intersection and difference and to show that these implementations are
correct. Thus, for a function%
\end{isamarkuptext}%
\isamarkuptrue%
\ \ list{\isacharunderscore}union\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharbrackleft}{\isacharprime}a\ list{\isacharcomma}\ {\isacharprime}a\ list{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}a\ list{\isachardoublequote}\isamarkupfalse%
%
\begin{isamarkuptext}%
to be defined by you it has to be shown that%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ {\isachardoublequote}set\ {\isacharparenleft}list{\isacharunderscore}union\ xs\ ys{\isacharparenright}\ {\isacharequal}\ set\ xs\ {\isasymunion}\ set\ ys{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\begin{isamarkuptext}%
In addition, the functions should be space efficient in the
sense that one obtains lists without duplicates (\isa{distinct})
whenever the parameters of the functions are duplicate-free. Thus, for
example,%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ {\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}{\isacharcolon}\ \isanewline
\ \ {\isachardoublequote}distinct\ xs\ {\isasymlongrightarrow}\ distinct\ ys\ {\isasymlongrightarrow}\ {\isacharparenleft}distinct\ {\isacharparenleft}list{\isacharunderscore}union\ xs\ ys{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\begin{isamarkuptext}%
\emph{Hint:} \isa{distinct} is defined in \isa{List{\isachardot}thy}. Also the function \isa{mem} and the lemma \isa{set{\isacharunderscore}mem{\isacharunderscore}eq} may be useful.%
\end{isamarkuptext}%
\isamarkuptrue%
%
\isamarkupsubsubsection{Quantification over Sets%
}
\isamarkuptrue%
%
\begin{isamarkuptext}%
Define a set \isa{S} such that the following proposition holds:%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}{\isasymforall}\ x\ {\isasymin}\ A{\isachardot}\ P\ x{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}{\isasymforall}\ x\ {\isasymin}\ B{\isachardot}\ P\ x{\isacharparenright}{\isacharparenright}\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymforall}\ x\ {\isasymin}\ S{\isachardot}\ P\ x{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\begin{isamarkuptext}%
Define a predicate \isa{P} such that%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ {\isachardoublequote}{\isasymforall}\ x\ {\isasymin}\ A{\isachardot}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isasymLongrightarrow}\ \ {\isasymforall}\ y\ {\isasymin}\ f\ {\isacharbackquote}\ A{\isachardot}\ Q\ y{\isachardoublequote}\isamarkupfalse%
\isanewline
\isanewline
\isamarkupfalse%
\isanewline
\isamarkupfalse%
\end{isabellebody}%
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "root"
%%% End: