replaced apply-style proof for instance Multiset :: plus_ac0 by recommended Isar proof style
(*
Ideals for commutative rings
$Id$
Author: Clemens Ballarin, started 24 September 1999
*)
Ideal = Ring +
consts
ideal_of :: ('a::ring) set => 'a set
is_ideal :: ('a::ring) set => bool
is_pideal :: ('a::ring) set => bool
defs
is_ideal_def "is_ideal I == (ALL a: I. ALL b: I. a + b : I) &
(ALL a: I. - a : I) & 0 : I &
(ALL a: I. ALL r. a * r : I)"
ideal_of_def "ideal_of S == Inter {I. is_ideal I & S <= I}"
is_pideal_def "is_pideal I == (EX a. I = ideal_of {a})"
(* Principle ideal domains *)
axclass
pid < domain
pid_ax "is_ideal I ==> is_pideal I"
end