(* Title: HOL/Library/Finite_Cartesian_Product
Author: Amine Chaieb, University of Cambridge
*)
header {* Definition of finite Cartesian product types. *}
theory Finite_Cartesian_Product
imports Main (*FIXME: ATP_Linkup is only needed for metis at a few places. We could dispense of that by changing the proofs.*)
begin
definition hassize (infixr "hassize" 12) where
"(S hassize n) = (finite S \<and> card S = n)"
lemma hassize_image_inj: assumes f: "inj_on f S" and S: "S hassize n"
shows "f ` S hassize n"
using f S card_image[OF f]
by (simp add: hassize_def inj_on_def)
subsection {* Finite Cartesian products, with indexing and lambdas. *}
typedef (open Cart)
('a, 'b) "^" (infixl "^" 15)
= "UNIV :: ('b \<Rightarrow> 'a) set"
morphisms Cart_nth Cart_lambda ..
notation Cart_nth (infixl "$" 90)
notation (xsymbols) Cart_lambda (binder "\<chi>" 10)
lemma stupid_ext: "(\<forall>x. f x = g x) \<longleftrightarrow> (f = g)"
apply auto
apply (rule ext)
apply auto
done
lemma Cart_eq: "((x:: 'a ^ 'b) = y) \<longleftrightarrow> (\<forall>i. x$i = y$i)"
by (simp add: Cart_nth_inject [symmetric] expand_fun_eq)
lemma Cart_lambda_beta [simp]: "Cart_lambda g $ i = g i"
by (simp add: Cart_lambda_inverse)
lemma Cart_lambda_unique:
fixes f :: "'a ^ 'b"
shows "(\<forall>i. f$i = g i) \<longleftrightarrow> Cart_lambda g = f"
by (auto simp add: Cart_eq)
lemma Cart_lambda_eta: "(\<chi> i. (g$i)) = g"
by (simp add: Cart_eq)
text{* A non-standard sum to "paste" Cartesian products. *}
definition pastecart :: "'a ^ 'm \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a ^ ('m + 'n)" where
"pastecart f g = (\<chi> i. case i of Inl a \<Rightarrow> f$a | Inr b \<Rightarrow> g$b)"
definition fstcart:: "'a ^('m + 'n) \<Rightarrow> 'a ^ 'm" where
"fstcart f = (\<chi> i. (f$(Inl i)))"
definition sndcart:: "'a ^('m + 'n) \<Rightarrow> 'a ^ 'n" where
"sndcart f = (\<chi> i. (f$(Inr i)))"
lemma nth_pastecart_Inl [simp]: "pastecart f g $ Inl a = f$a"
unfolding pastecart_def by simp
lemma nth_pastecart_Inr [simp]: "pastecart f g $ Inr b = g$b"
unfolding pastecart_def by simp
lemma nth_fstcart [simp]: "fstcart f $ i = f $ Inl i"
unfolding fstcart_def by simp
lemma nth_sndtcart [simp]: "sndcart f $ i = f $ Inr i"
unfolding sndcart_def by simp
lemma finite_sum_image: "(UNIV::('a + 'b) set) = range Inl \<union> range Inr"
by (auto, case_tac x, auto)
lemma fstcart_pastecart: "fstcart (pastecart (x::'a ^'m ) (y:: 'a ^ 'n)) = x"
by (simp add: Cart_eq)
lemma sndcart_pastecart: "sndcart (pastecart (x::'a ^'m ) (y:: 'a ^ 'n)) = y"
by (simp add: Cart_eq)
lemma pastecart_fst_snd: "pastecart (fstcart z) (sndcart z) = z"
by (simp add: Cart_eq pastecart_def fstcart_def sndcart_def split: sum.split)
lemma pastecart_eq: "(x = y) \<longleftrightarrow> (fstcart x = fstcart y) \<and> (sndcart x = sndcart y)"
using pastecart_fst_snd[of x] pastecart_fst_snd[of y] by metis
lemma forall_pastecart: "(\<forall>p. P p) \<longleftrightarrow> (\<forall>x y. P (pastecart x y))"
by (metis pastecart_fst_snd fstcart_pastecart sndcart_pastecart)
lemma exists_pastecart: "(\<exists>p. P p) \<longleftrightarrow> (\<exists>x y. P (pastecart x y))"
by (metis pastecart_fst_snd fstcart_pastecart sndcart_pastecart)
end