(* Title: Poly_Deriv.thy
Author: Amine Chaieb
Ported to new Polynomial library by Brian Huffman
*)
header{* Polynomials and Differentiation *}
theory Poly_Deriv
imports Deriv Polynomial
begin
subsection {* Derivatives of univariate polynomials *}
definition
pderiv :: "'a::real_normed_field poly \<Rightarrow> 'a poly" where
"pderiv = poly_rec 0 (\<lambda>a p p'. p + pCons 0 p')"
lemma pderiv_0 [simp]: "pderiv 0 = 0"
unfolding pderiv_def by (simp add: poly_rec_0)
lemma pderiv_pCons: "pderiv (pCons a p) = p + pCons 0 (pderiv p)"
unfolding pderiv_def by (simp add: poly_rec_pCons)
lemma coeff_pderiv: "coeff (pderiv p) n = of_nat (Suc n) * coeff p (Suc n)"
apply (induct p arbitrary: n, simp)
apply (simp add: pderiv_pCons coeff_pCons algebra_simps split: nat.split)
done
lemma pderiv_eq_0_iff: "pderiv p = 0 \<longleftrightarrow> degree p = 0"
apply (rule iffI)
apply (cases p, simp)
apply (simp add: expand_poly_eq coeff_pderiv del: of_nat_Suc)
apply (simp add: expand_poly_eq coeff_pderiv coeff_eq_0)
done
lemma degree_pderiv: "degree (pderiv p) = degree p - 1"
apply (rule order_antisym [OF degree_le])
apply (simp add: coeff_pderiv coeff_eq_0)
apply (cases "degree p", simp)
apply (rule le_degree)
apply (simp add: coeff_pderiv del: of_nat_Suc)
apply (rule subst, assumption)
apply (rule leading_coeff_neq_0, clarsimp)
done
lemma pderiv_singleton [simp]: "pderiv [:a:] = 0"
by (simp add: pderiv_pCons)
lemma pderiv_add: "pderiv (p + q) = pderiv p + pderiv q"
by (rule poly_ext, simp add: coeff_pderiv algebra_simps)
lemma pderiv_minus: "pderiv (- p) = - pderiv p"
by (rule poly_ext, simp add: coeff_pderiv)
lemma pderiv_diff: "pderiv (p - q) = pderiv p - pderiv q"
by (rule poly_ext, simp add: coeff_pderiv algebra_simps)
lemma pderiv_smult: "pderiv (smult a p) = smult a (pderiv p)"
by (rule poly_ext, simp add: coeff_pderiv algebra_simps)
lemma pderiv_mult: "pderiv (p * q) = p * pderiv q + q * pderiv p"
apply (induct p)
apply simp
apply (simp add: pderiv_add pderiv_smult pderiv_pCons algebra_simps)
done
lemma pderiv_power_Suc:
"pderiv (p ^ Suc n) = smult (of_nat (Suc n)) (p ^ n) * pderiv p"
apply (induct n)
apply simp
apply (subst power_Suc)
apply (subst pderiv_mult)
apply (erule ssubst)
apply (simp add: smult_add_left algebra_simps)
done
lemma DERIV_cmult2: "DERIV f x :> D ==> DERIV (%x. (f x) * c :: real) x :> D * c"
by (simp add: DERIV_cmult mult_commute [of _ c])
lemma DERIV_pow2: "DERIV (%x. x ^ Suc n) x :> real (Suc n) * (x ^ n)"
by (rule lemma_DERIV_subst, rule DERIV_pow, simp)
declare DERIV_pow2 [simp] DERIV_pow [simp]
lemma DERIV_add_const: "DERIV f x :> D ==> DERIV (%x. a + f x :: 'a::real_normed_field) x :> D"
by (rule lemma_DERIV_subst, rule DERIV_add, auto)
lemma poly_DERIV[simp]: "DERIV (%x. poly p x) x :> poly (pderiv p) x"
apply (induct p)
apply simp
apply (simp add: pderiv_pCons)
apply (rule lemma_DERIV_subst)
apply (rule DERIV_add DERIV_mult DERIV_const DERIV_ident | assumption)+
apply simp
done
text{* Consequences of the derivative theorem above*}
lemma poly_differentiable[simp]: "(%x. poly p x) differentiable (x::real)"
apply (simp add: differentiable_def)
apply (blast intro: poly_DERIV)
done
lemma poly_isCont[simp]: "isCont (%x. poly p x) (x::real)"
by (rule poly_DERIV [THEN DERIV_isCont])
lemma poly_IVT_pos: "[| a < b; poly p (a::real) < 0; 0 < poly p b |]
==> \<exists>x. a < x & x < b & (poly p x = 0)"
apply (cut_tac f = "%x. poly p x" and a = a and b = b and y = 0 in IVT_objl)
apply (auto simp add: order_le_less)
done
lemma poly_IVT_neg: "[| (a::real) < b; 0 < poly p a; poly p b < 0 |]
==> \<exists>x. a < x & x < b & (poly p x = 0)"
by (insert poly_IVT_pos [where p = "- p" ]) simp
lemma poly_MVT: "(a::real) < b ==>
\<exists>x. a < x & x < b & (poly p b - poly p a = (b - a) * poly (pderiv p) x)"
apply (drule_tac f = "poly p" in MVT, auto)
apply (rule_tac x = z in exI)
apply (auto simp add: real_mult_left_cancel poly_DERIV [THEN DERIV_unique])
done
text{*Lemmas for Derivatives*}
lemma order_unique_lemma:
fixes p :: "'a::idom poly"
assumes "[:-a, 1:] ^ n dvd p \<and> \<not> [:-a, 1:] ^ Suc n dvd p"
shows "n = order a p"
unfolding Polynomial.order_def
apply (rule Least_equality [symmetric])
apply (rule assms [THEN conjunct2])
apply (erule contrapos_np)
apply (rule power_le_dvd)
apply (rule assms [THEN conjunct1])
apply simp
done
lemma lemma_order_pderiv1:
"pderiv ([:- a, 1:] ^ Suc n * q) = [:- a, 1:] ^ Suc n * pderiv q +
smult (of_nat (Suc n)) (q * [:- a, 1:] ^ n)"
apply (simp only: pderiv_mult pderiv_power_Suc)
apply (simp del: power_Suc of_nat_Suc add: pderiv_pCons)
done
lemma dvd_add_cancel1:
fixes a b c :: "'a::comm_ring_1"
shows "a dvd b + c \<Longrightarrow> a dvd b \<Longrightarrow> a dvd c"
by (drule (1) Ring_and_Field.dvd_diff, simp)
lemma lemma_order_pderiv [rule_format]:
"\<forall>p q a. 0 < n &
pderiv p \<noteq> 0 &
p = [:- a, 1:] ^ n * q & ~ [:- a, 1:] dvd q
--> n = Suc (order a (pderiv p))"
apply (cases "n", safe, rename_tac n p q a)
apply (rule order_unique_lemma)
apply (rule conjI)
apply (subst lemma_order_pderiv1)
apply (rule dvd_add)
apply (rule dvd_mult2)
apply (rule le_imp_power_dvd, simp)
apply (rule dvd_smult)
apply (rule dvd_mult)
apply (rule dvd_refl)
apply (subst lemma_order_pderiv1)
apply (erule contrapos_nn) back
apply (subgoal_tac "[:- a, 1:] ^ Suc n dvd q * [:- a, 1:] ^ n")
apply (simp del: mult_pCons_left)
apply (drule dvd_add_cancel1)
apply (simp del: mult_pCons_left)
apply (drule dvd_smult_cancel, simp del: of_nat_Suc)
apply assumption
done
lemma order_decomp:
"p \<noteq> 0
==> \<exists>q. p = [:-a, 1:] ^ (order a p) * q &
~([:-a, 1:] dvd q)"
apply (drule order [where a=a])
apply (erule conjE)
apply (erule dvdE)
apply (rule exI)
apply (rule conjI, assumption)
apply (erule contrapos_nn)
apply (erule ssubst) back
apply (subst power_Suc2)
apply (erule mult_dvd_mono [OF dvd_refl])
done
lemma order_pderiv: "[| pderiv p \<noteq> 0; order a p \<noteq> 0 |]
==> (order a p = Suc (order a (pderiv p)))"
apply (case_tac "p = 0", simp)
apply (drule_tac a = a and p = p in order_decomp)
using neq0_conv
apply (blast intro: lemma_order_pderiv)
done
lemma order_mult: "p * q \<noteq> 0 \<Longrightarrow> order a (p * q) = order a p + order a q"
proof -
def i \<equiv> "order a p"
def j \<equiv> "order a q"
def t \<equiv> "[:-a, 1:]"
have t_dvd_iff: "\<And>u. t dvd u \<longleftrightarrow> poly u a = 0"
unfolding t_def by (simp add: dvd_iff_poly_eq_0)
assume "p * q \<noteq> 0"
then show "order a (p * q) = i + j"
apply clarsimp
apply (drule order [where a=a and p=p, folded i_def t_def])
apply (drule order [where a=a and p=q, folded j_def t_def])
apply clarify
apply (rule order_unique_lemma [symmetric], fold t_def)
apply (erule dvdE)+
apply (simp add: power_add t_dvd_iff)
done
qed
text{*Now justify the standard squarefree decomposition, i.e. f / gcd(f,f'). *}
lemma order_divides: "[:-a, 1:] ^ n dvd p \<longleftrightarrow> p = 0 \<or> n \<le> order a p"
apply (cases "p = 0", auto)
apply (drule order_2 [where a=a and p=p])
apply (erule contrapos_np)
apply (erule power_le_dvd)
apply simp
apply (erule power_le_dvd [OF order_1])
done
lemma poly_squarefree_decomp_order:
assumes "pderiv p \<noteq> 0"
and p: "p = q * d"
and p': "pderiv p = e * d"
and d: "d = r * p + s * pderiv p"
shows "order a q = (if order a p = 0 then 0 else 1)"
proof (rule classical)
assume 1: "order a q \<noteq> (if order a p = 0 then 0 else 1)"
from `pderiv p \<noteq> 0` have "p \<noteq> 0" by auto
with p have "order a p = order a q + order a d"
by (simp add: order_mult)
with 1 have "order a p \<noteq> 0" by (auto split: if_splits)
have "order a (pderiv p) = order a e + order a d"
using `pderiv p \<noteq> 0` `pderiv p = e * d` by (simp add: order_mult)
have "order a p = Suc (order a (pderiv p))"
using `pderiv p \<noteq> 0` `order a p \<noteq> 0` by (rule order_pderiv)
have "d \<noteq> 0" using `p \<noteq> 0` `p = q * d` by simp
have "([:-a, 1:] ^ (order a (pderiv p))) dvd d"
apply (simp add: d)
apply (rule dvd_add)
apply (rule dvd_mult)
apply (simp add: order_divides `p \<noteq> 0`
`order a p = Suc (order a (pderiv p))`)
apply (rule dvd_mult)
apply (simp add: order_divides)
done
then have "order a (pderiv p) \<le> order a d"
using `d \<noteq> 0` by (simp add: order_divides)
show ?thesis
using `order a p = order a q + order a d`
using `order a (pderiv p) = order a e + order a d`
using `order a p = Suc (order a (pderiv p))`
using `order a (pderiv p) \<le> order a d`
by auto
qed
lemma poly_squarefree_decomp_order2: "[| pderiv p \<noteq> 0;
p = q * d;
pderiv p = e * d;
d = r * p + s * pderiv p
|] ==> \<forall>a. order a q = (if order a p = 0 then 0 else 1)"
apply (blast intro: poly_squarefree_decomp_order)
done
lemma order_pderiv2: "[| pderiv p \<noteq> 0; order a p \<noteq> 0 |]
==> (order a (pderiv p) = n) = (order a p = Suc n)"
apply (auto dest: order_pderiv)
done
definition
rsquarefree :: "'a::idom poly => bool" where
"rsquarefree p = (p \<noteq> 0 & (\<forall>a. (order a p = 0) | (order a p = 1)))"
lemma pderiv_iszero: "pderiv p = 0 \<Longrightarrow> \<exists>h. p = [:h:]"
apply (simp add: pderiv_eq_0_iff)
apply (case_tac p, auto split: if_splits)
done
lemma rsquarefree_roots:
"rsquarefree p = (\<forall>a. ~(poly p a = 0 & poly (pderiv p) a = 0))"
apply (simp add: rsquarefree_def)
apply (case_tac "p = 0", simp, simp)
apply (case_tac "pderiv p = 0")
apply simp
apply (drule pderiv_iszero, clarify)
apply simp
apply (rule allI)
apply (cut_tac p = "[:h:]" and a = a in order_root)
apply simp
apply (auto simp add: order_root order_pderiv2)
apply (erule_tac x="a" in allE, simp)
done
lemma poly_squarefree_decomp:
assumes "pderiv p \<noteq> 0"
and "p = q * d"
and "pderiv p = e * d"
and "d = r * p + s * pderiv p"
shows "rsquarefree q & (\<forall>a. (poly q a = 0) = (poly p a = 0))"
proof -
from `pderiv p \<noteq> 0` have "p \<noteq> 0" by auto
with `p = q * d` have "q \<noteq> 0" by simp
have "\<forall>a. order a q = (if order a p = 0 then 0 else 1)"
using assms by (rule poly_squarefree_decomp_order2)
with `p \<noteq> 0` `q \<noteq> 0` show ?thesis
by (simp add: rsquarefree_def order_root)
qed
end