(* Title: HOL/Library/Continuity.thy
ID: $Id$
Author: David von Oheimb, TU Muenchen
*)
header {* Continuity and iterations (of set transformers) *}
theory Continuity
imports Plain "~~/src/HOL/Relation_Power"
begin
subsection {* Continuity for complete lattices *}
definition
chain :: "(nat \<Rightarrow> 'a::complete_lattice) \<Rightarrow> bool" where
"chain M \<longleftrightarrow> (\<forall>i. M i \<le> M (Suc i))"
definition
continuous :: "('a::complete_lattice \<Rightarrow> 'a::complete_lattice) \<Rightarrow> bool" where
"continuous F \<longleftrightarrow> (\<forall>M. chain M \<longrightarrow> F (SUP i. M i) = (SUP i. F (M i)))"
lemma SUP_nat_conv:
"(SUP n. M n) = sup (M 0) (SUP n. M(Suc n))"
apply(rule order_antisym)
apply(rule SUP_leI)
apply(case_tac n)
apply simp
apply (fast intro:le_SUPI le_supI2)
apply(simp)
apply (blast intro:SUP_leI le_SUPI)
done
lemma continuous_mono: fixes F :: "'a::complete_lattice \<Rightarrow> 'a::complete_lattice"
assumes "continuous F" shows "mono F"
proof
fix A B :: "'a" assume "A <= B"
let ?C = "%i::nat. if i=0 then A else B"
have "chain ?C" using `A <= B` by(simp add:chain_def)
have "F B = sup (F A) (F B)"
proof -
have "sup A B = B" using `A <= B` by (simp add:sup_absorb2)
hence "F B = F(SUP i. ?C i)" by (subst SUP_nat_conv) simp
also have "\<dots> = (SUP i. F(?C i))"
using `chain ?C` `continuous F` by(simp add:continuous_def)
also have "\<dots> = sup (F A) (F B)" by (subst SUP_nat_conv) simp
finally show ?thesis .
qed
thus "F A \<le> F B" by(subst le_iff_sup, simp)
qed
lemma continuous_lfp:
assumes "continuous F" shows "lfp F = (SUP i. (F^i) bot)"
proof -
note mono = continuous_mono[OF `continuous F`]
{ fix i have "(F^i) bot \<le> lfp F"
proof (induct i)
show "(F^0) bot \<le> lfp F" by simp
next
case (Suc i)
have "(F^(Suc i)) bot = F((F^i) bot)" by simp
also have "\<dots> \<le> F(lfp F)" by(rule monoD[OF mono Suc])
also have "\<dots> = lfp F" by(simp add:lfp_unfold[OF mono, symmetric])
finally show ?case .
qed }
hence "(SUP i. (F^i) bot) \<le> lfp F" by (blast intro!:SUP_leI)
moreover have "lfp F \<le> (SUP i. (F^i) bot)" (is "_ \<le> ?U")
proof (rule lfp_lowerbound)
have "chain(%i. (F^i) bot)"
proof -
{ fix i have "(F^i) bot \<le> (F^(Suc i)) bot"
proof (induct i)
case 0 show ?case by simp
next
case Suc thus ?case using monoD[OF mono Suc] by auto
qed }
thus ?thesis by(auto simp add:chain_def)
qed
hence "F ?U = (SUP i. (F^(i+1)) bot)" using `continuous F` by (simp add:continuous_def)
also have "\<dots> \<le> ?U" by(fast intro:SUP_leI le_SUPI)
finally show "F ?U \<le> ?U" .
qed
ultimately show ?thesis by (blast intro:order_antisym)
qed
text{* The following development is just for sets but presents an up
and a down version of chains and continuity and covers @{const gfp}. *}
subsection "Chains"
definition
up_chain :: "(nat => 'a set) => bool" where
"up_chain F = (\<forall>i. F i \<subseteq> F (Suc i))"
lemma up_chainI: "(!!i. F i \<subseteq> F (Suc i)) ==> up_chain F"
by (simp add: up_chain_def)
lemma up_chainD: "up_chain F ==> F i \<subseteq> F (Suc i)"
by (simp add: up_chain_def)
lemma up_chain_less_mono:
"up_chain F ==> x < y ==> F x \<subseteq> F y"
apply (induct y)
apply (blast dest: up_chainD elim: less_SucE)+
done
lemma up_chain_mono: "up_chain F ==> x \<le> y ==> F x \<subseteq> F y"
apply (drule le_imp_less_or_eq)
apply (blast dest: up_chain_less_mono)
done
definition
down_chain :: "(nat => 'a set) => bool" where
"down_chain F = (\<forall>i. F (Suc i) \<subseteq> F i)"
lemma down_chainI: "(!!i. F (Suc i) \<subseteq> F i) ==> down_chain F"
by (simp add: down_chain_def)
lemma down_chainD: "down_chain F ==> F (Suc i) \<subseteq> F i"
by (simp add: down_chain_def)
lemma down_chain_less_mono:
"down_chain F ==> x < y ==> F y \<subseteq> F x"
apply (induct y)
apply (blast dest: down_chainD elim: less_SucE)+
done
lemma down_chain_mono: "down_chain F ==> x \<le> y ==> F y \<subseteq> F x"
apply (drule le_imp_less_or_eq)
apply (blast dest: down_chain_less_mono)
done
subsection "Continuity"
definition
up_cont :: "('a set => 'a set) => bool" where
"up_cont f = (\<forall>F. up_chain F --> f (\<Union>(range F)) = \<Union>(f ` range F))"
lemma up_contI:
"(!!F. up_chain F ==> f (\<Union>(range F)) = \<Union>(f ` range F)) ==> up_cont f"
apply (unfold up_cont_def)
apply blast
done
lemma up_contD:
"up_cont f ==> up_chain F ==> f (\<Union>(range F)) = \<Union>(f ` range F)"
apply (unfold up_cont_def)
apply auto
done
lemma up_cont_mono: "up_cont f ==> mono f"
apply (rule monoI)
apply (drule_tac F = "\<lambda>i. if i = 0 then x else y" in up_contD)
apply (rule up_chainI)
apply simp
apply (drule Un_absorb1)
apply (auto simp add: nat_not_singleton)
done
definition
down_cont :: "('a set => 'a set) => bool" where
"down_cont f =
(\<forall>F. down_chain F --> f (Inter (range F)) = Inter (f ` range F))"
lemma down_contI:
"(!!F. down_chain F ==> f (Inter (range F)) = Inter (f ` range F)) ==>
down_cont f"
apply (unfold down_cont_def)
apply blast
done
lemma down_contD: "down_cont f ==> down_chain F ==>
f (Inter (range F)) = Inter (f ` range F)"
apply (unfold down_cont_def)
apply auto
done
lemma down_cont_mono: "down_cont f ==> mono f"
apply (rule monoI)
apply (drule_tac F = "\<lambda>i. if i = 0 then y else x" in down_contD)
apply (rule down_chainI)
apply simp
apply (drule Int_absorb1)
apply auto
apply (auto simp add: nat_not_singleton)
done
subsection "Iteration"
definition
up_iterate :: "('a set => 'a set) => nat => 'a set" where
"up_iterate f n = (f^n) {}"
lemma up_iterate_0 [simp]: "up_iterate f 0 = {}"
by (simp add: up_iterate_def)
lemma up_iterate_Suc [simp]: "up_iterate f (Suc i) = f (up_iterate f i)"
by (simp add: up_iterate_def)
lemma up_iterate_chain: "mono F ==> up_chain (up_iterate F)"
apply (rule up_chainI)
apply (induct_tac i)
apply simp+
apply (erule (1) monoD)
done
lemma UNION_up_iterate_is_fp:
"up_cont F ==>
F (UNION UNIV (up_iterate F)) = UNION UNIV (up_iterate F)"
apply (frule up_cont_mono [THEN up_iterate_chain])
apply (drule (1) up_contD)
apply simp
apply (auto simp del: up_iterate_Suc simp add: up_iterate_Suc [symmetric])
apply (case_tac xa)
apply auto
done
lemma UNION_up_iterate_lowerbound:
"mono F ==> F P = P ==> UNION UNIV (up_iterate F) \<subseteq> P"
apply (subgoal_tac "(!!i. up_iterate F i \<subseteq> P)")
apply fast
apply (induct_tac i)
prefer 2 apply (drule (1) monoD)
apply auto
done
lemma UNION_up_iterate_is_lfp:
"up_cont F ==> lfp F = UNION UNIV (up_iterate F)"
apply (rule set_eq_subset [THEN iffD2])
apply (rule conjI)
prefer 2
apply (drule up_cont_mono)
apply (rule UNION_up_iterate_lowerbound)
apply assumption
apply (erule lfp_unfold [symmetric])
apply (rule lfp_lowerbound)
apply (rule set_eq_subset [THEN iffD1, THEN conjunct2])
apply (erule UNION_up_iterate_is_fp [symmetric])
done
definition
down_iterate :: "('a set => 'a set) => nat => 'a set" where
"down_iterate f n = (f^n) UNIV"
lemma down_iterate_0 [simp]: "down_iterate f 0 = UNIV"
by (simp add: down_iterate_def)
lemma down_iterate_Suc [simp]:
"down_iterate f (Suc i) = f (down_iterate f i)"
by (simp add: down_iterate_def)
lemma down_iterate_chain: "mono F ==> down_chain (down_iterate F)"
apply (rule down_chainI)
apply (induct_tac i)
apply simp+
apply (erule (1) monoD)
done
lemma INTER_down_iterate_is_fp:
"down_cont F ==>
F (INTER UNIV (down_iterate F)) = INTER UNIV (down_iterate F)"
apply (frule down_cont_mono [THEN down_iterate_chain])
apply (drule (1) down_contD)
apply simp
apply (auto simp del: down_iterate_Suc simp add: down_iterate_Suc [symmetric])
apply (case_tac xa)
apply auto
done
lemma INTER_down_iterate_upperbound:
"mono F ==> F P = P ==> P \<subseteq> INTER UNIV (down_iterate F)"
apply (subgoal_tac "(!!i. P \<subseteq> down_iterate F i)")
apply fast
apply (induct_tac i)
prefer 2 apply (drule (1) monoD)
apply auto
done
lemma INTER_down_iterate_is_gfp:
"down_cont F ==> gfp F = INTER UNIV (down_iterate F)"
apply (rule set_eq_subset [THEN iffD2])
apply (rule conjI)
apply (drule down_cont_mono)
apply (rule INTER_down_iterate_upperbound)
apply assumption
apply (erule gfp_unfold [symmetric])
apply (rule gfp_upperbound)
apply (rule set_eq_subset [THEN iffD1, THEN conjunct2])
apply (erule INTER_down_iterate_is_fp)
done
end