more standard Thy_Load.check_thy for Pure.thy, relying on its header;
pass uses and keywords from Thy_Load.check_thy to Thy_Info.load_thy;
clarified 'ML_file' wrt. Thy_Load.require/provide, which is also relevant for Thy_Load.all_current;
(* Title: HOL/Inductive.thy
Author: Markus Wenzel, TU Muenchen
*)
header {* Knaster-Tarski Fixpoint Theorem and inductive definitions *}
theory Inductive
imports Complete_Lattices
keywords
"inductive" "coinductive" :: thy_decl and
"inductive_cases" "inductive_simps" :: thy_script and "monos" and
"rep_datatype" :: thy_goal and
"primrec" :: thy_decl
uses
("Tools/inductive.ML")
("Tools/Datatype/datatype_aux.ML")
("Tools/Datatype/datatype_prop.ML")
("Tools/Datatype/datatype_data.ML")
("Tools/Datatype/datatype_case.ML")
("Tools/Datatype/rep_datatype.ML")
("Tools/Datatype/datatype_codegen.ML")
("Tools/Datatype/primrec.ML")
begin
subsection {* Least and greatest fixed points *}
context complete_lattice
begin
definition
lfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where
"lfp f = Inf {u. f u \<le> u}" --{*least fixed point*}
definition
gfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where
"gfp f = Sup {u. u \<le> f u}" --{*greatest fixed point*}
subsection{* Proof of Knaster-Tarski Theorem using @{term lfp} *}
text{*@{term "lfp f"} is the least upper bound of
the set @{term "{u. f(u) \<le> u}"} *}
lemma lfp_lowerbound: "f A \<le> A ==> lfp f \<le> A"
by (auto simp add: lfp_def intro: Inf_lower)
lemma lfp_greatest: "(!!u. f u \<le> u ==> A \<le> u) ==> A \<le> lfp f"
by (auto simp add: lfp_def intro: Inf_greatest)
end
lemma lfp_lemma2: "mono f ==> f (lfp f) \<le> lfp f"
by (iprover intro: lfp_greatest order_trans monoD lfp_lowerbound)
lemma lfp_lemma3: "mono f ==> lfp f \<le> f (lfp f)"
by (iprover intro: lfp_lemma2 monoD lfp_lowerbound)
lemma lfp_unfold: "mono f ==> lfp f = f (lfp f)"
by (iprover intro: order_antisym lfp_lemma2 lfp_lemma3)
lemma lfp_const: "lfp (\<lambda>x. t) = t"
by (rule lfp_unfold) (simp add:mono_def)
subsection {* General induction rules for least fixed points *}
theorem lfp_induct:
assumes mono: "mono f" and ind: "f (inf (lfp f) P) <= P"
shows "lfp f <= P"
proof -
have "inf (lfp f) P <= lfp f" by (rule inf_le1)
with mono have "f (inf (lfp f) P) <= f (lfp f)" ..
also from mono have "f (lfp f) = lfp f" by (rule lfp_unfold [symmetric])
finally have "f (inf (lfp f) P) <= lfp f" .
from this and ind have "f (inf (lfp f) P) <= inf (lfp f) P" by (rule le_infI)
hence "lfp f <= inf (lfp f) P" by (rule lfp_lowerbound)
also have "inf (lfp f) P <= P" by (rule inf_le2)
finally show ?thesis .
qed
lemma lfp_induct_set:
assumes lfp: "a: lfp(f)"
and mono: "mono(f)"
and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)"
shows "P(a)"
by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp])
(auto simp: intro: indhyp)
lemma lfp_ordinal_induct:
fixes f :: "'a\<Colon>complete_lattice \<Rightarrow> 'a"
assumes mono: "mono f"
and P_f: "\<And>S. P S \<Longrightarrow> P (f S)"
and P_Union: "\<And>M. \<forall>S\<in>M. P S \<Longrightarrow> P (Sup M)"
shows "P (lfp f)"
proof -
let ?M = "{S. S \<le> lfp f \<and> P S}"
have "P (Sup ?M)" using P_Union by simp
also have "Sup ?M = lfp f"
proof (rule antisym)
show "Sup ?M \<le> lfp f" by (blast intro: Sup_least)
hence "f (Sup ?M) \<le> f (lfp f)" by (rule mono [THEN monoD])
hence "f (Sup ?M) \<le> lfp f" using mono [THEN lfp_unfold] by simp
hence "f (Sup ?M) \<in> ?M" using P_f P_Union by simp
hence "f (Sup ?M) \<le> Sup ?M" by (rule Sup_upper)
thus "lfp f \<le> Sup ?M" by (rule lfp_lowerbound)
qed
finally show ?thesis .
qed
lemma lfp_ordinal_induct_set:
assumes mono: "mono f"
and P_f: "!!S. P S ==> P(f S)"
and P_Union: "!!M. !S:M. P S ==> P(Union M)"
shows "P(lfp f)"
using assms by (rule lfp_ordinal_induct)
text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct},
to control unfolding*}
lemma def_lfp_unfold: "[| h==lfp(f); mono(f) |] ==> h = f(h)"
by (auto intro!: lfp_unfold)
lemma def_lfp_induct:
"[| A == lfp(f); mono(f);
f (inf A P) \<le> P
|] ==> A \<le> P"
by (blast intro: lfp_induct)
lemma def_lfp_induct_set:
"[| A == lfp(f); mono(f); a:A;
!!x. [| x: f(A Int {x. P(x)}) |] ==> P(x)
|] ==> P(a)"
by (blast intro: lfp_induct_set)
(*Monotonicity of lfp!*)
lemma lfp_mono: "(!!Z. f Z \<le> g Z) ==> lfp f \<le> lfp g"
by (rule lfp_lowerbound [THEN lfp_greatest], blast intro: order_trans)
subsection {* Proof of Knaster-Tarski Theorem using @{term gfp} *}
text{*@{term "gfp f"} is the greatest lower bound of
the set @{term "{u. u \<le> f(u)}"} *}
lemma gfp_upperbound: "X \<le> f X ==> X \<le> gfp f"
by (auto simp add: gfp_def intro: Sup_upper)
lemma gfp_least: "(!!u. u \<le> f u ==> u \<le> X) ==> gfp f \<le> X"
by (auto simp add: gfp_def intro: Sup_least)
lemma gfp_lemma2: "mono f ==> gfp f \<le> f (gfp f)"
by (iprover intro: gfp_least order_trans monoD gfp_upperbound)
lemma gfp_lemma3: "mono f ==> f (gfp f) \<le> gfp f"
by (iprover intro: gfp_lemma2 monoD gfp_upperbound)
lemma gfp_unfold: "mono f ==> gfp f = f (gfp f)"
by (iprover intro: order_antisym gfp_lemma2 gfp_lemma3)
subsection {* Coinduction rules for greatest fixed points *}
text{*weak version*}
lemma weak_coinduct: "[| a: X; X \<subseteq> f(X) |] ==> a : gfp(f)"
by (rule gfp_upperbound [THEN subsetD]) auto
lemma weak_coinduct_image: "!!X. [| a : X; g`X \<subseteq> f (g`X) |] ==> g a : gfp f"
apply (erule gfp_upperbound [THEN subsetD])
apply (erule imageI)
done
lemma coinduct_lemma:
"[| X \<le> f (sup X (gfp f)); mono f |] ==> sup X (gfp f) \<le> f (sup X (gfp f))"
apply (frule gfp_lemma2)
apply (drule mono_sup)
apply (rule le_supI)
apply assumption
apply (rule order_trans)
apply (rule order_trans)
apply assumption
apply (rule sup_ge2)
apply assumption
done
text{*strong version, thanks to Coen and Frost*}
lemma coinduct_set: "[| mono(f); a: X; X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)"
by (blast intro: weak_coinduct [OF _ coinduct_lemma])
lemma coinduct: "[| mono(f); X \<le> f (sup X (gfp f)) |] ==> X \<le> gfp(f)"
apply (rule order_trans)
apply (rule sup_ge1)
apply (erule gfp_upperbound [OF coinduct_lemma])
apply assumption
done
lemma gfp_fun_UnI2: "[| mono(f); a: gfp(f) |] ==> a: f(X Un gfp(f))"
by (blast dest: gfp_lemma2 mono_Un)
subsection {* Even Stronger Coinduction Rule, by Martin Coen *}
text{* Weakens the condition @{term "X \<subseteq> f(X)"} to one expressed using both
@{term lfp} and @{term gfp}*}
lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)"
by (iprover intro: subset_refl monoI Un_mono monoD)
lemma coinduct3_lemma:
"[| X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))); mono(f) |]
==> lfp(%x. f(x) Un X Un gfp(f)) \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)))"
apply (rule subset_trans)
apply (erule coinduct3_mono_lemma [THEN lfp_lemma3])
apply (rule Un_least [THEN Un_least])
apply (rule subset_refl, assumption)
apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption)
apply (rule monoD, assumption)
apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto)
done
lemma coinduct3:
"[| mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)"
apply (rule coinduct3_lemma [THEN [2] weak_coinduct])
apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst])
apply (simp_all)
done
text{*Definition forms of @{text gfp_unfold} and @{text coinduct},
to control unfolding*}
lemma def_gfp_unfold: "[| A==gfp(f); mono(f) |] ==> A = f(A)"
by (auto intro!: gfp_unfold)
lemma def_coinduct:
"[| A==gfp(f); mono(f); X \<le> f(sup X A) |] ==> X \<le> A"
by (iprover intro!: coinduct)
lemma def_coinduct_set:
"[| A==gfp(f); mono(f); a:X; X \<subseteq> f(X Un A) |] ==> a: A"
by (auto intro!: coinduct_set)
(*The version used in the induction/coinduction package*)
lemma def_Collect_coinduct:
"[| A == gfp(%w. Collect(P(w))); mono(%w. Collect(P(w)));
a: X; !!z. z: X ==> P (X Un A) z |] ==>
a : A"
by (erule def_coinduct_set) auto
lemma def_coinduct3:
"[| A==gfp(f); mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un A)) |] ==> a: A"
by (auto intro!: coinduct3)
text{*Monotonicity of @{term gfp}!*}
lemma gfp_mono: "(!!Z. f Z \<le> g Z) ==> gfp f \<le> gfp g"
by (rule gfp_upperbound [THEN gfp_least], blast intro: order_trans)
subsection {* Inductive predicates and sets *}
text {* Package setup. *}
theorems basic_monos =
subset_refl imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj
Collect_mono in_mono vimage_mono
use "Tools/inductive.ML"
setup Inductive.setup
theorems [mono] =
imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj
imp_mono not_mono
Ball_def Bex_def
induct_rulify_fallback
subsection {* Inductive datatypes and primitive recursion *}
text {* Package setup. *}
use "Tools/Datatype/datatype_aux.ML"
use "Tools/Datatype/datatype_prop.ML"
use "Tools/Datatype/datatype_data.ML" setup Datatype_Data.setup
use "Tools/Datatype/datatype_case.ML" setup Datatype_Case.setup
use "Tools/Datatype/rep_datatype.ML"
use "Tools/Datatype/datatype_codegen.ML" setup Datatype_Codegen.setup
use "Tools/Datatype/primrec.ML"
text{* Lambda-abstractions with pattern matching: *}
syntax
"_lam_pats_syntax" :: "cases_syn => 'a => 'b" ("(%_)" 10)
syntax (xsymbols)
"_lam_pats_syntax" :: "cases_syn => 'a => 'b" ("(\<lambda>_)" 10)
parse_translation (advanced) {*
let
fun fun_tr ctxt [cs] =
let
val x = Syntax.free (fst (Name.variant "x" (Term.declare_term_frees cs Name.context)));
val ft = Datatype_Case.case_tr true ctxt [x, cs];
in lambda x ft end
in [(@{syntax_const "_lam_pats_syntax"}, fun_tr)] end
*}
end