doc-src/Exercises/0304/a4/generated/a4.tex
author wenzelm
Sat, 23 Apr 2005 19:51:24 +0200
changeset 15833 78109c7012ed
parent 14500 2015348ceecb
permissions -rw-r--r--
removed token_trans.ML (some content moved to syn_ext.ML);

%
\begin{isabellebody}%
\def\isabellecontext{a{\isadigit{4}}}%
\isamarkupfalse%
%
\isamarkupsubsection{Natural Deduction -- Predicate Logic; Sets as Lists%
}
\isamarkuptrue%
%
\isamarkupsubsubsection{Predicate Logic Formulae%
}
\isamarkuptrue%
%
\begin{isamarkuptext}%
We are again talking about proofs in the calculus of Natural
Deduction. In addition to the rules of section~\ref{psv0304a3}, you may now also use


  \isa{exI{\isacharcolon}}~\isa{P\ x\ {\isasymLongrightarrow}\ {\isasymexists}x{\isachardot}\ P\ x}\\
  \isa{exE{\isacharcolon}}~\isa{{\isasymlbrakk}{\isasymexists}x{\isachardot}\ P\ x{\isacharsemicolon}\ {\isasymAnd}x{\isachardot}\ P\ x\ {\isasymLongrightarrow}\ Q{\isasymrbrakk}\ {\isasymLongrightarrow}\ Q}\\
  \isa{allI{\isacharcolon}}~\isa{{\isacharparenleft}{\isasymAnd}x{\isachardot}\ P\ x{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymforall}x{\isachardot}\ P\ x}\\
  \isa{allE{\isacharcolon}}~\isa{{\isasymlbrakk}{\isasymforall}x{\isachardot}\ P\ x{\isacharsemicolon}\ P\ x\ {\isasymLongrightarrow}\ R{\isasymrbrakk}\ {\isasymLongrightarrow}\ R}\\

Give a proof of the following propositions or an argument why the formula is not valid:%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isasymexists}x{\isachardot}\ {\isasymforall}y{\isachardot}\ P\ x\ y{\isacharparenright}\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymforall}y{\isachardot}\ {\isasymexists}x{\isachardot}\ P\ x\ y{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isanewline
\isamarkupfalse%
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isasymforall}x{\isachardot}\ P\ x\ {\isasymlongrightarrow}\ Q{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isacharparenleft}{\isasymexists}x{\isachardot}\ P\ x{\isacharparenright}\ {\isasymlongrightarrow}\ Q{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isanewline
\isamarkupfalse%
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}{\isasymforall}\ x{\isachardot}\ P\ x{\isacharparenright}\ \ {\isasymand}\ {\isacharparenleft}{\isasymforall}\ x{\isachardot}\ Q\ x{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isasymforall}\ x{\isachardot}\ {\isacharparenleft}P\ x\ {\isasymand}\ Q\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isanewline
\isamarkupfalse%
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}{\isasymforall}\ x{\isachardot}\ P\ x{\isacharparenright}\ {\isasymor}\ {\isacharparenleft}{\isasymforall}\ x{\isachardot}\ Q\ x{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isasymforall}\ x{\isachardot}\ {\isacharparenleft}P\ x\ {\isasymor}\ Q\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isanewline
\isamarkupfalse%
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}{\isasymexists}\ x{\isachardot}\ P\ x{\isacharparenright}\ {\isasymor}\ {\isacharparenleft}{\isasymexists}\ x{\isachardot}\ Q\ x{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}{\isasymexists}\ x{\isachardot}\ {\isacharparenleft}P\ x\ {\isasymor}\ Q\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isanewline
\isamarkupfalse%
\isacommand{lemma}\ {\isachardoublequote}{\isasymexists}x{\isachardot}\ {\isacharparenleft}P\ x\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymforall}x{\isachardot}\ P\ x{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\isamarkupsubsubsection{Sets as Lists%
}
\isamarkuptrue%
%
\begin{isamarkuptext}%
Finite sets can obviously be implemented by lists. In the
following, you will be asked to implement the set operations union,
intersection and difference and to show that these implementations are
correct. Thus, for a function%
\end{isamarkuptext}%
\isamarkuptrue%
\ \ list{\isacharunderscore}union\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharbrackleft}{\isacharprime}a\ list{\isacharcomma}\ {\isacharprime}a\ list{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}a\ list{\isachardoublequote}\isamarkupfalse%
%
\begin{isamarkuptext}%
to be defined by you it has to be shown that%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ {\isachardoublequote}set\ {\isacharparenleft}list{\isacharunderscore}union\ xs\ ys{\isacharparenright}\ {\isacharequal}\ set\ xs\ {\isasymunion}\ set\ ys{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\begin{isamarkuptext}%
In addition, the functions should be space efficient in the
sense that one obtains lists without duplicates (\isa{distinct})
whenever the parameters of the functions are duplicate-free. Thus, for
example,%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ {\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}{\isacharcolon}\ \isanewline
\ \ {\isachardoublequote}distinct\ xs\ {\isasymlongrightarrow}\ distinct\ ys\ {\isasymlongrightarrow}\ {\isacharparenleft}distinct\ {\isacharparenleft}list{\isacharunderscore}union\ xs\ ys{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\begin{isamarkuptext}%
\emph{Hint:} \isa{distinct} is defined in \isa{List{\isachardot}thy}. Also the function \isa{mem} and the lemma \isa{set{\isacharunderscore}mem{\isacharunderscore}eq} may be useful.%
\end{isamarkuptext}%
\isamarkuptrue%
%
\isamarkupsubsubsection{Quantification over Sets%
}
\isamarkuptrue%
%
\begin{isamarkuptext}%
Define a set \isa{S} such that the following proposition holds:%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}{\isacharparenleft}{\isasymforall}\ x\ {\isasymin}\ A{\isachardot}\ P\ x{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}{\isasymforall}\ x\ {\isasymin}\ B{\isachardot}\ P\ x{\isacharparenright}{\isacharparenright}\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymforall}\ x\ {\isasymin}\ S{\isachardot}\ P\ x{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
\isamarkupfalse%
%
\begin{isamarkuptext}%
Define a predicate \isa{P} such that%
\end{isamarkuptext}%
\isamarkuptrue%
\isacommand{lemma}\ {\isachardoublequote}{\isasymforall}\ x\ {\isasymin}\ A{\isachardot}\ P\ {\isacharparenleft}f\ x{\isacharparenright}\ {\isasymLongrightarrow}\ \ {\isasymforall}\ y\ {\isasymin}\ f\ {\isacharbackquote}\ A{\isachardot}\ Q\ y{\isachardoublequote}\isamarkupfalse%
\isanewline
\isanewline
\isamarkupfalse%
\isanewline
\isamarkupfalse%
\end{isabellebody}%
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "root"
%%% End: