(* Title: ZF/OrderArith.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
*)
header{*Combining Orderings: Foundations of Ordinal Arithmetic*}
theory OrderArith imports Order Sum Ordinal begin
definition
(*disjoint sum of two relations; underlies ordinal addition*)
radd :: "[i,i,i,i]=>i" where
"radd(A,r,B,s) ==
{z: (A+B) * (A+B).
(EX x y. z = <Inl(x), Inr(y)>) |
(EX x' x. z = <Inl(x'), Inl(x)> & <x',x>:r) |
(EX y' y. z = <Inr(y'), Inr(y)> & <y',y>:s)}"
definition
(*lexicographic product of two relations; underlies ordinal multiplication*)
rmult :: "[i,i,i,i]=>i" where
"rmult(A,r,B,s) ==
{z: (A*B) * (A*B).
EX x' y' x y. z = <<x',y'>, <x,y>> &
(<x',x>: r | (x'=x & <y',y>: s))}"
definition
(*inverse image of a relation*)
rvimage :: "[i,i,i]=>i" where
"rvimage(A,f,r) == {z: A*A. EX x y. z = <x,y> & <f`x,f`y>: r}"
definition
measure :: "[i, i\<Rightarrow>i] \<Rightarrow> i" where
"measure(A,f) == {<x,y>: A*A. f(x) < f(y)}"
subsection{*Addition of Relations -- Disjoint Sum*}
subsubsection{*Rewrite rules. Can be used to obtain introduction rules*}
lemma radd_Inl_Inr_iff [iff]:
"<Inl(a), Inr(b)> : radd(A,r,B,s) <-> a:A & b:B"
by (unfold radd_def, blast)
lemma radd_Inl_iff [iff]:
"<Inl(a'), Inl(a)> : radd(A,r,B,s) <-> a':A & a:A & <a',a>:r"
by (unfold radd_def, blast)
lemma radd_Inr_iff [iff]:
"<Inr(b'), Inr(b)> : radd(A,r,B,s) <-> b':B & b:B & <b',b>:s"
by (unfold radd_def, blast)
lemma radd_Inr_Inl_iff [simp]:
"<Inr(b), Inl(a)> : radd(A,r,B,s) <-> False"
by (unfold radd_def, blast)
declare radd_Inr_Inl_iff [THEN iffD1, dest!]
subsubsection{*Elimination Rule*}
lemma raddE:
"[| <p',p> : radd(A,r,B,s);
!!x y. [| p'=Inl(x); x:A; p=Inr(y); y:B |] ==> Q;
!!x' x. [| p'=Inl(x'); p=Inl(x); <x',x>: r; x':A; x:A |] ==> Q;
!!y' y. [| p'=Inr(y'); p=Inr(y); <y',y>: s; y':B; y:B |] ==> Q
|] ==> Q"
by (unfold radd_def, blast)
subsubsection{*Type checking*}
lemma radd_type: "radd(A,r,B,s) <= (A+B) * (A+B)"
apply (unfold radd_def)
apply (rule Collect_subset)
done
lemmas field_radd = radd_type [THEN field_rel_subset]
subsubsection{*Linearity*}
lemma linear_radd:
"[| linear(A,r); linear(B,s) |] ==> linear(A+B,radd(A,r,B,s))"
by (unfold linear_def, blast)
subsubsection{*Well-foundedness*}
lemma wf_on_radd: "[| wf[A](r); wf[B](s) |] ==> wf[A+B](radd(A,r,B,s))"
apply (rule wf_onI2)
apply (subgoal_tac "ALL x:A. Inl (x) : Ba")
--{*Proving the lemma, which is needed twice!*}
prefer 2
apply (erule_tac V = "y : A + B" in thin_rl)
apply (rule_tac ballI)
apply (erule_tac r = r and a = x in wf_on_induct, assumption)
apply blast
txt{*Returning to main part of proof*}
apply safe
apply blast
apply (erule_tac r = s and a = ya in wf_on_induct, assumption, blast)
done
lemma wf_radd: "[| wf(r); wf(s) |] ==> wf(radd(field(r),r,field(s),s))"
apply (simp add: wf_iff_wf_on_field)
apply (rule wf_on_subset_A [OF _ field_radd])
apply (blast intro: wf_on_radd)
done
lemma well_ord_radd:
"[| well_ord(A,r); well_ord(B,s) |] ==> well_ord(A+B, radd(A,r,B,s))"
apply (rule well_ordI)
apply (simp add: well_ord_def wf_on_radd)
apply (simp add: well_ord_def tot_ord_def linear_radd)
done
subsubsection{*An @{term ord_iso} congruence law*}
lemma sum_bij:
"[| f: bij(A,C); g: bij(B,D) |]
==> (lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) : bij(A+B, C+D)"
apply (rule_tac d = "case (%x. Inl (converse(f)`x), %y. Inr(converse(g)`y))"
in lam_bijective)
apply (typecheck add: bij_is_inj inj_is_fun)
apply (auto simp add: left_inverse_bij right_inverse_bij)
done
lemma sum_ord_iso_cong:
"[| f: ord_iso(A,r,A',r'); g: ord_iso(B,s,B',s') |] ==>
(lam z:A+B. case(%x. Inl(f`x), %y. Inr(g`y), z))
: ord_iso(A+B, radd(A,r,B,s), A'+B', radd(A',r',B',s'))"
apply (unfold ord_iso_def)
apply (safe intro!: sum_bij)
(*Do the beta-reductions now*)
apply (auto cong add: conj_cong simp add: bij_is_fun [THEN apply_type])
done
(*Could we prove an ord_iso result? Perhaps
ord_iso(A+B, radd(A,r,B,s), A Un B, r Un s) *)
lemma sum_disjoint_bij: "A Int B = 0 ==>
(lam z:A+B. case(%x. x, %y. y, z)) : bij(A+B, A Un B)"
apply (rule_tac d = "%z. if z:A then Inl (z) else Inr (z) " in lam_bijective)
apply auto
done
subsubsection{*Associativity*}
lemma sum_assoc_bij:
"(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))
: bij((A+B)+C, A+(B+C))"
apply (rule_tac d = "case (%x. Inl (Inl (x)), case (%x. Inl (Inr (x)), Inr))"
in lam_bijective)
apply auto
done
lemma sum_assoc_ord_iso:
"(lam z:(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))
: ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t),
A+(B+C), radd(A, r, B+C, radd(B,s,C,t)))"
by (rule sum_assoc_bij [THEN ord_isoI], auto)
subsection{*Multiplication of Relations -- Lexicographic Product*}
subsubsection{*Rewrite rule. Can be used to obtain introduction rules*}
lemma rmult_iff [iff]:
"<<a',b'>, <a,b>> : rmult(A,r,B,s) <->
(<a',a>: r & a':A & a:A & b': B & b: B) |
(<b',b>: s & a'=a & a:A & b': B & b: B)"
by (unfold rmult_def, blast)
lemma rmultE:
"[| <<a',b'>, <a,b>> : rmult(A,r,B,s);
[| <a',a>: r; a':A; a:A; b':B; b:B |] ==> Q;
[| <b',b>: s; a:A; a'=a; b':B; b:B |] ==> Q
|] ==> Q"
by blast
subsubsection{*Type checking*}
lemma rmult_type: "rmult(A,r,B,s) <= (A*B) * (A*B)"
by (unfold rmult_def, rule Collect_subset)
lemmas field_rmult = rmult_type [THEN field_rel_subset]
subsubsection{*Linearity*}
lemma linear_rmult:
"[| linear(A,r); linear(B,s) |] ==> linear(A*B,rmult(A,r,B,s))"
by (simp add: linear_def, blast)
subsubsection{*Well-foundedness*}
lemma wf_on_rmult: "[| wf[A](r); wf[B](s) |] ==> wf[A*B](rmult(A,r,B,s))"
apply (rule wf_onI2)
apply (erule SigmaE)
apply (erule ssubst)
apply (subgoal_tac "ALL b:B. <x,b>: Ba", blast)
apply (erule_tac a = x in wf_on_induct, assumption)
apply (rule ballI)
apply (erule_tac a = b in wf_on_induct, assumption)
apply (best elim!: rmultE bspec [THEN mp])
done
lemma wf_rmult: "[| wf(r); wf(s) |] ==> wf(rmult(field(r),r,field(s),s))"
apply (simp add: wf_iff_wf_on_field)
apply (rule wf_on_subset_A [OF _ field_rmult])
apply (blast intro: wf_on_rmult)
done
lemma well_ord_rmult:
"[| well_ord(A,r); well_ord(B,s) |] ==> well_ord(A*B, rmult(A,r,B,s))"
apply (rule well_ordI)
apply (simp add: well_ord_def wf_on_rmult)
apply (simp add: well_ord_def tot_ord_def linear_rmult)
done
subsubsection{*An @{term ord_iso} congruence law*}
lemma prod_bij:
"[| f: bij(A,C); g: bij(B,D) |]
==> (lam <x,y>:A*B. <f`x, g`y>) : bij(A*B, C*D)"
apply (rule_tac d = "%<x,y>. <converse (f) `x, converse (g) `y>"
in lam_bijective)
apply (typecheck add: bij_is_inj inj_is_fun)
apply (auto simp add: left_inverse_bij right_inverse_bij)
done
lemma prod_ord_iso_cong:
"[| f: ord_iso(A,r,A',r'); g: ord_iso(B,s,B',s') |]
==> (lam <x,y>:A*B. <f`x, g`y>)
: ord_iso(A*B, rmult(A,r,B,s), A'*B', rmult(A',r',B',s'))"
apply (unfold ord_iso_def)
apply (safe intro!: prod_bij)
apply (simp_all add: bij_is_fun [THEN apply_type])
apply (blast intro: bij_is_inj [THEN inj_apply_equality])
done
lemma singleton_prod_bij: "(lam z:A. <x,z>) : bij(A, {x}*A)"
by (rule_tac d = snd in lam_bijective, auto)
(*Used??*)
lemma singleton_prod_ord_iso:
"well_ord({x},xr) ==>
(lam z:A. <x,z>) : ord_iso(A, r, {x}*A, rmult({x}, xr, A, r))"
apply (rule singleton_prod_bij [THEN ord_isoI])
apply (simp (no_asm_simp))
apply (blast dest: well_ord_is_wf [THEN wf_on_not_refl])
done
(*Here we build a complicated function term, then simplify it using
case_cong, id_conv, comp_lam, case_case.*)
lemma prod_sum_singleton_bij:
"a~:C ==>
(lam x:C*B + D. case(%x. x, %y.<a,y>, x))
: bij(C*B + D, C*B Un {a}*D)"
apply (rule subst_elem)
apply (rule id_bij [THEN sum_bij, THEN comp_bij])
apply (rule singleton_prod_bij)
apply (rule sum_disjoint_bij, blast)
apply (simp (no_asm_simp) cong add: case_cong)
apply (rule comp_lam [THEN trans, symmetric])
apply (fast elim!: case_type)
apply (simp (no_asm_simp) add: case_case)
done
lemma prod_sum_singleton_ord_iso:
"[| a:A; well_ord(A,r) |] ==>
(lam x:pred(A,a,r)*B + pred(B,b,s). case(%x. x, %y.<a,y>, x))
: ord_iso(pred(A,a,r)*B + pred(B,b,s),
radd(A*B, rmult(A,r,B,s), B, s),
pred(A,a,r)*B Un {a}*pred(B,b,s), rmult(A,r,B,s))"
apply (rule prod_sum_singleton_bij [THEN ord_isoI])
apply (simp (no_asm_simp) add: pred_iff well_ord_is_wf [THEN wf_on_not_refl])
apply (auto elim!: well_ord_is_wf [THEN wf_on_asym] predE)
done
subsubsection{*Distributive law*}
lemma sum_prod_distrib_bij:
"(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))
: bij((A+B)*C, (A*C)+(B*C))"
by (rule_tac d = "case (%<x,y>.<Inl (x),y>, %<x,y>.<Inr (x),y>) "
in lam_bijective, auto)
lemma sum_prod_distrib_ord_iso:
"(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))
: ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t),
(A*C)+(B*C), radd(A*C, rmult(A,r,C,t), B*C, rmult(B,s,C,t)))"
by (rule sum_prod_distrib_bij [THEN ord_isoI], auto)
subsubsection{*Associativity*}
lemma prod_assoc_bij:
"(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) : bij((A*B)*C, A*(B*C))"
by (rule_tac d = "%<x, <y,z>>. <<x,y>, z>" in lam_bijective, auto)
lemma prod_assoc_ord_iso:
"(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>)
: ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t),
A*(B*C), rmult(A, r, B*C, rmult(B,s,C,t)))"
by (rule prod_assoc_bij [THEN ord_isoI], auto)
subsection{*Inverse Image of a Relation*}
subsubsection{*Rewrite rule*}
lemma rvimage_iff: "<a,b> : rvimage(A,f,r) <-> <f`a,f`b>: r & a:A & b:A"
by (unfold rvimage_def, blast)
subsubsection{*Type checking*}
lemma rvimage_type: "rvimage(A,f,r) <= A*A"
by (unfold rvimage_def, rule Collect_subset)
lemmas field_rvimage = rvimage_type [THEN field_rel_subset]
lemma rvimage_converse: "rvimage(A,f, converse(r)) = converse(rvimage(A,f,r))"
by (unfold rvimage_def, blast)
subsubsection{*Partial Ordering Properties*}
lemma irrefl_rvimage:
"[| f: inj(A,B); irrefl(B,r) |] ==> irrefl(A, rvimage(A,f,r))"
apply (unfold irrefl_def rvimage_def)
apply (blast intro: inj_is_fun [THEN apply_type])
done
lemma trans_on_rvimage:
"[| f: inj(A,B); trans[B](r) |] ==> trans[A](rvimage(A,f,r))"
apply (unfold trans_on_def rvimage_def)
apply (blast intro: inj_is_fun [THEN apply_type])
done
lemma part_ord_rvimage:
"[| f: inj(A,B); part_ord(B,r) |] ==> part_ord(A, rvimage(A,f,r))"
apply (unfold part_ord_def)
apply (blast intro!: irrefl_rvimage trans_on_rvimage)
done
subsubsection{*Linearity*}
lemma linear_rvimage:
"[| f: inj(A,B); linear(B,r) |] ==> linear(A,rvimage(A,f,r))"
apply (simp add: inj_def linear_def rvimage_iff)
apply (blast intro: apply_funtype)
done
lemma tot_ord_rvimage:
"[| f: inj(A,B); tot_ord(B,r) |] ==> tot_ord(A, rvimage(A,f,r))"
apply (unfold tot_ord_def)
apply (blast intro!: part_ord_rvimage linear_rvimage)
done
subsubsection{*Well-foundedness*}
lemma wf_rvimage [intro!]: "wf(r) ==> wf(rvimage(A,f,r))"
apply (simp (no_asm_use) add: rvimage_def wf_eq_minimal)
apply clarify
apply (subgoal_tac "EX w. w : {w: {f`x. x:Q}. EX x. x: Q & (f`x = w) }")
apply (erule allE)
apply (erule impE)
apply assumption
apply blast
apply blast
done
text{*But note that the combination of @{text wf_imp_wf_on} and
@{text wf_rvimage} gives @{prop "wf(r) ==> wf[C](rvimage(A,f,r))"}*}
lemma wf_on_rvimage: "[| f: A->B; wf[B](r) |] ==> wf[A](rvimage(A,f,r))"
apply (rule wf_onI2)
apply (subgoal_tac "ALL z:A. f`z=f`y --> z: Ba")
apply blast
apply (erule_tac a = "f`y" in wf_on_induct)
apply (blast intro!: apply_funtype)
apply (blast intro!: apply_funtype dest!: rvimage_iff [THEN iffD1])
done
(*Note that we need only wf[A](...) and linear(A,...) to get the result!*)
lemma well_ord_rvimage:
"[| f: inj(A,B); well_ord(B,r) |] ==> well_ord(A, rvimage(A,f,r))"
apply (rule well_ordI)
apply (unfold well_ord_def tot_ord_def)
apply (blast intro!: wf_on_rvimage inj_is_fun)
apply (blast intro!: linear_rvimage)
done
lemma ord_iso_rvimage:
"f: bij(A,B) ==> f: ord_iso(A, rvimage(A,f,s), B, s)"
apply (unfold ord_iso_def)
apply (simp add: rvimage_iff)
done
lemma ord_iso_rvimage_eq:
"f: ord_iso(A,r, B,s) ==> rvimage(A,f,s) = r Int A*A"
by (unfold ord_iso_def rvimage_def, blast)
subsection{*Every well-founded relation is a subset of some inverse image of
an ordinal*}
lemma wf_rvimage_Ord: "Ord(i) \<Longrightarrow> wf(rvimage(A, f, Memrel(i)))"
by (blast intro: wf_rvimage wf_Memrel)
definition
wfrank :: "[i,i]=>i" where
"wfrank(r,a) == wfrec(r, a, %x f. \<Union>y \<in> r-``{x}. succ(f`y))"
definition
wftype :: "i=>i" where
"wftype(r) == \<Union>y \<in> range(r). succ(wfrank(r,y))"
lemma wfrank: "wf(r) ==> wfrank(r,a) = (\<Union>y \<in> r-``{a}. succ(wfrank(r,y)))"
by (subst wfrank_def [THEN def_wfrec], simp_all)
lemma Ord_wfrank: "wf(r) ==> Ord(wfrank(r,a))"
apply (rule_tac a=a in wf_induct, assumption)
apply (subst wfrank, assumption)
apply (rule Ord_succ [THEN Ord_UN], blast)
done
lemma wfrank_lt: "[|wf(r); <a,b> \<in> r|] ==> wfrank(r,a) < wfrank(r,b)"
apply (rule_tac a1 = b in wfrank [THEN ssubst], assumption)
apply (rule UN_I [THEN ltI])
apply (simp add: Ord_wfrank vimage_iff)+
done
lemma Ord_wftype: "wf(r) ==> Ord(wftype(r))"
by (simp add: wftype_def Ord_wfrank)
lemma wftypeI: "\<lbrakk>wf(r); x \<in> field(r)\<rbrakk> \<Longrightarrow> wfrank(r,x) \<in> wftype(r)"
apply (simp add: wftype_def)
apply (blast intro: wfrank_lt [THEN ltD])
done
lemma wf_imp_subset_rvimage:
"[|wf(r); r \<subseteq> A*A|] ==> \<exists>i f. Ord(i) & r <= rvimage(A, f, Memrel(i))"
apply (rule_tac x="wftype(r)" in exI)
apply (rule_tac x="\<lambda>x\<in>A. wfrank(r,x)" in exI)
apply (simp add: Ord_wftype, clarify)
apply (frule subsetD, assumption, clarify)
apply (simp add: rvimage_iff wfrank_lt [THEN ltD])
apply (blast intro: wftypeI)
done
theorem wf_iff_subset_rvimage:
"relation(r) ==> wf(r) <-> (\<exists>i f A. Ord(i) & r <= rvimage(A, f, Memrel(i)))"
by (blast dest!: relation_field_times_field wf_imp_subset_rvimage
intro: wf_rvimage_Ord [THEN wf_subset])
subsection{*Other Results*}
lemma wf_times: "A Int B = 0 ==> wf(A*B)"
by (simp add: wf_def, blast)
text{*Could also be used to prove @{text wf_radd}*}
lemma wf_Un:
"[| range(r) Int domain(s) = 0; wf(r); wf(s) |] ==> wf(r Un s)"
apply (simp add: wf_def, clarify)
apply (rule equalityI)
prefer 2 apply blast
apply clarify
apply (drule_tac x=Z in spec)
apply (drule_tac x="Z Int domain(s)" in spec)
apply simp
apply (blast intro: elim: equalityE)
done
subsubsection{*The Empty Relation*}
lemma wf0: "wf(0)"
by (simp add: wf_def, blast)
lemma linear0: "linear(0,0)"
by (simp add: linear_def)
lemma well_ord0: "well_ord(0,0)"
by (blast intro: wf_imp_wf_on well_ordI wf0 linear0)
subsubsection{*The "measure" relation is useful with wfrec*}
lemma measure_eq_rvimage_Memrel:
"measure(A,f) = rvimage(A,Lambda(A,f),Memrel(Collect(RepFun(A,f),Ord)))"
apply (simp (no_asm) add: measure_def rvimage_def Memrel_iff)
apply (rule equalityI, auto)
apply (auto intro: Ord_in_Ord simp add: lt_def)
done
lemma wf_measure [iff]: "wf(measure(A,f))"
by (simp (no_asm) add: measure_eq_rvimage_Memrel wf_Memrel wf_rvimage)
lemma measure_iff [iff]: "<x,y> : measure(A,f) <-> x:A & y:A & f(x)<f(y)"
by (simp (no_asm) add: measure_def)
lemma linear_measure:
assumes Ordf: "!!x. x \<in> A ==> Ord(f(x))"
and inj: "!!x y. [|x \<in> A; y \<in> A; f(x) = f(y) |] ==> x=y"
shows "linear(A, measure(A,f))"
apply (auto simp add: linear_def)
apply (rule_tac i="f(x)" and j="f(y)" in Ord_linear_lt)
apply (simp_all add: Ordf)
apply (blast intro: inj)
done
lemma wf_on_measure: "wf[B](measure(A,f))"
by (rule wf_imp_wf_on [OF wf_measure])
lemma well_ord_measure:
assumes Ordf: "!!x. x \<in> A ==> Ord(f(x))"
and inj: "!!x y. [|x \<in> A; y \<in> A; f(x) = f(y) |] ==> x=y"
shows "well_ord(A, measure(A,f))"
apply (rule well_ordI)
apply (rule wf_on_measure)
apply (blast intro: linear_measure Ordf inj)
done
lemma measure_type: "measure(A,f) <= A*A"
by (auto simp add: measure_def)
subsubsection{*Well-foundedness of Unions*}
lemma wf_on_Union:
assumes wfA: "wf[A](r)"
and wfB: "!!a. a\<in>A ==> wf[B(a)](s)"
and ok: "!!a u v. [|<u,v> \<in> s; v \<in> B(a); a \<in> A|]
==> (\<exists>a'\<in>A. <a',a> \<in> r & u \<in> B(a')) | u \<in> B(a)"
shows "wf[\<Union>a\<in>A. B(a)](s)"
apply (rule wf_onI2)
apply (erule UN_E)
apply (subgoal_tac "\<forall>z \<in> B(a). z \<in> Ba", blast)
apply (rule_tac a = a in wf_on_induct [OF wfA], assumption)
apply (rule ballI)
apply (rule_tac a = z in wf_on_induct [OF wfB], assumption, assumption)
apply (rename_tac u)
apply (drule_tac x=u in bspec, blast)
apply (erule mp, clarify)
apply (frule ok, assumption+, blast)
done
subsubsection{*Bijections involving Powersets*}
lemma Pow_sum_bij:
"(\<lambda>Z \<in> Pow(A+B). <{x \<in> A. Inl(x) \<in> Z}, {y \<in> B. Inr(y) \<in> Z}>)
\<in> bij(Pow(A+B), Pow(A)*Pow(B))"
apply (rule_tac d = "%<X,Y>. {Inl (x). x \<in> X} Un {Inr (y). y \<in> Y}"
in lam_bijective)
apply force+
done
text{*As a special case, we have @{term "bij(Pow(A*B), A -> Pow(B))"} *}
lemma Pow_Sigma_bij:
"(\<lambda>r \<in> Pow(Sigma(A,B)). \<lambda>x \<in> A. r``{x})
\<in> bij(Pow(Sigma(A,B)), \<Pi> x \<in> A. Pow(B(x)))"
apply (rule_tac d = "%f. \<Union>x \<in> A. \<Union>y \<in> f`x. {<x,y>}" in lam_bijective)
apply (blast intro: lam_type)
apply (blast dest: apply_type, simp_all)
apply fast (*strange, but blast can't do it*)
apply (rule fun_extension, auto)
by blast
end