proper handling of assumptions arising from the goal's being expressed in rule format, for Isar proof construction
(* Title: HOL/Metis.thy
Author: Lawrence C. Paulson, Cambridge University Computer Laboratory
Author: Jia Meng, Cambridge University Computer Laboratory and NICTA
Author: Jasmin Blanchette, TU Muenchen
*)
header {* Metis Proof Method *}
theory Metis
imports ATP
keywords "try0" :: diag
begin
ML_file "~~/src/Tools/Metis/metis.ML"
subsection {* Literal selection and lambda-lifting helpers *}
definition select :: "'a \<Rightarrow> 'a" where
[no_atp]: "select = (\<lambda>x. x)"
lemma not_atomize: "(\<not> A \<Longrightarrow> False) \<equiv> Trueprop A"
by (cut_tac atomize_not [of "\<not> A"]) simp
lemma atomize_not_select: "(A \<Longrightarrow> select False) \<equiv> Trueprop (\<not> A)"
unfolding select_def by (rule atomize_not)
lemma not_atomize_select: "(\<not> A \<Longrightarrow> select False) \<equiv> Trueprop A"
unfolding select_def by (rule not_atomize)
lemma select_FalseI: "False \<Longrightarrow> select False" by simp
definition lambda :: "'a \<Rightarrow> 'a" where
[no_atp]: "lambda = (\<lambda>x. x)"
lemma eq_lambdaI: "x \<equiv> y \<Longrightarrow> x \<equiv> lambda y"
unfolding lambda_def by assumption
subsection {* Metis package *}
ML_file "Tools/Metis/metis_generate.ML"
ML_file "Tools/Metis/metis_reconstruct.ML"
ML_file "Tools/Metis/metis_tactic.ML"
setup {* Metis_Tactic.setup *}
hide_const (open) select fFalse fTrue fNot fComp fconj fdisj fimplies fequal
lambda
hide_fact (open) select_def not_atomize atomize_not_select not_atomize_select
select_FalseI fFalse_def fTrue_def fNot_def fconj_def fdisj_def fimplies_def
fequal_def fTrue_ne_fFalse fNot_table fconj_table fdisj_table fimplies_table
fequal_table fAll_table fEx_table fNot_law fComp_law fconj_laws fdisj_laws
fimplies_laws fequal_laws fAll_law fEx_law lambda_def eq_lambdaI
subsection {* Try0 *}
ML_file "Tools/try0.ML"
setup {* Try0.setup *}
end