(* Title: FOL/IFOL.thy
ID: $Id$
Author: Lawrence C Paulson and Markus Wenzel
*)
header {* Intuitionistic first-order logic *}
theory IFOL = Pure
files ("IFOL_lemmas.ML") ("fologic.ML") ("hypsubstdata.ML") ("intprover.ML"):
subsection {* Syntax and axiomatic basis *}
global
classes "term" < logic
defaultsort "term"
typedecl o
judgment
Trueprop :: "o => prop" ("(_)" 5)
consts
True :: o
False :: o
(* Connectives *)
"=" :: "['a, 'a] => o" (infixl 50)
Not :: "o => o" ("~ _" [40] 40)
& :: "[o, o] => o" (infixr 35)
"|" :: "[o, o] => o" (infixr 30)
--> :: "[o, o] => o" (infixr 25)
<-> :: "[o, o] => o" (infixr 25)
(* Quantifiers *)
All :: "('a => o) => o" (binder "ALL " 10)
Ex :: "('a => o) => o" (binder "EX " 10)
Ex1 :: "('a => o) => o" (binder "EX! " 10)
syntax
"~=" :: "['a, 'a] => o" (infixl 50)
translations
"x ~= y" == "~ (x = y)"
syntax (symbols)
Not :: "o => o" ("\<not> _" [40] 40)
"op &" :: "[o, o] => o" (infixr "\<and>" 35)
"op |" :: "[o, o] => o" (infixr "\<or>" 30)
"op -->" :: "[o, o] => o" (infixr "\<midarrow>\<rightarrow>" 25)
"op <->" :: "[o, o] => o" (infixr "\<leftarrow>\<rightarrow>" 25)
"ALL " :: "[idts, o] => o" ("(3\<forall>_./ _)" [0, 10] 10)
"EX " :: "[idts, o] => o" ("(3\<exists>_./ _)" [0, 10] 10)
"EX! " :: "[idts, o] => o" ("(3\<exists>!_./ _)" [0, 10] 10)
"op ~=" :: "['a, 'a] => o" (infixl "\<noteq>" 50)
syntax (xsymbols)
"op -->" :: "[o, o] => o" (infixr "\<longrightarrow>" 25)
"op <->" :: "[o, o] => o" (infixr "\<longleftrightarrow>" 25)
syntax (HTML output)
Not :: "o => o" ("\<not> _" [40] 40)
local
axioms
(* Equality *)
refl: "a=a"
subst: "[| a=b; P(a) |] ==> P(b)"
(* Propositional logic *)
conjI: "[| P; Q |] ==> P&Q"
conjunct1: "P&Q ==> P"
conjunct2: "P&Q ==> Q"
disjI1: "P ==> P|Q"
disjI2: "Q ==> P|Q"
disjE: "[| P|Q; P ==> R; Q ==> R |] ==> R"
impI: "(P ==> Q) ==> P-->Q"
mp: "[| P-->Q; P |] ==> Q"
FalseE: "False ==> P"
(* Definitions *)
True_def: "True == False-->False"
not_def: "~P == P-->False"
iff_def: "P<->Q == (P-->Q) & (Q-->P)"
(* Unique existence *)
ex1_def: "EX! x. P(x) == EX x. P(x) & (ALL y. P(y) --> y=x)"
(* Quantifiers *)
allI: "(!!x. P(x)) ==> (ALL x. P(x))"
spec: "(ALL x. P(x)) ==> P(x)"
exI: "P(x) ==> (EX x. P(x))"
exE: "[| EX x. P(x); !!x. P(x) ==> R |] ==> R"
(* Reflection *)
eq_reflection: "(x=y) ==> (x==y)"
iff_reflection: "(P<->Q) ==> (P==Q)"
subsection {* Lemmas and proof tools *}
setup Simplifier.setup
use "IFOL_lemmas.ML"
declare impE [Pure.elim] iffD1 [Pure.elim] iffD2 [Pure.elim]
use "fologic.ML"
use "hypsubstdata.ML"
setup hypsubst_setup
use "intprover.ML"
subsection {* Atomizing meta-level rules *}
lemma atomize_all [atomize]: "(!!x. P(x)) == Trueprop (ALL x. P(x))"
proof (rule equal_intr_rule)
assume "!!x. P(x)"
show "ALL x. P(x)" by (rule allI)
next
assume "ALL x. P(x)"
thus "!!x. P(x)" by (rule allE)
qed
lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)"
proof (rule equal_intr_rule)
assume r: "A ==> B"
show "A --> B" by (rule impI) (rule r)
next
assume "A --> B" and A
thus B by (rule mp)
qed
lemma atomize_eq [atomize]: "(x == y) == Trueprop (x = y)"
proof (rule equal_intr_rule)
assume "x == y"
show "x = y" by (unfold prems) (rule refl)
next
assume "x = y"
thus "x == y" by (rule eq_reflection)
qed
end