(* Title: Pure/Isar/interpretation.ML
Author: Clemens Ballarin, TU Muenchen
Author: Florian Haftmann, TU Muenchen
Locale interpretation.
*)
signature INTERPRETATION =
sig
type 'a defines = (Attrib.binding * ((binding * mixfix) * 'a)) list
(*interpretation in proofs*)
val interpret: Expression.expression_i -> Proof.state -> Proof.state
val interpret_cmd: Expression.expression -> Proof.state -> Proof.state
(*interpretation in local theories*)
val interpretation: Expression.expression_i -> local_theory -> Proof.state
val interpretation_cmd: Expression.expression -> local_theory -> Proof.state
(*interpretation into global theories*)
val global_interpretation: Expression.expression_i ->
term defines -> local_theory -> Proof.state
val global_interpretation_cmd: Expression.expression ->
string defines -> local_theory -> Proof.state
(*interpretation between locales*)
val sublocale: Expression.expression_i ->
term defines -> local_theory -> Proof.state
val sublocale_cmd: Expression.expression ->
string defines -> local_theory -> Proof.state
val global_sublocale: string -> Expression.expression_i ->
term defines -> theory -> Proof.state
val global_sublocale_cmd: xstring * Position.T -> Expression.expression ->
string defines -> theory -> Proof.state
(*mixed Isar interface*)
val isar_interpretation: Expression.expression_i -> local_theory -> Proof.state
val isar_interpretation_cmd: Expression.expression -> local_theory -> Proof.state
end;
structure Interpretation : INTERPRETATION =
struct
(** common interpretation machinery **)
type 'a defines = (Attrib.binding * ((binding * mixfix) * 'a)) list
(* reading of locale expressions with rewrite morphisms *)
local
fun augment_with_def prep_term ((name, atts), ((b, mx), raw_rhs)) lthy =
let
val rhs = prep_term lthy raw_rhs;
val lthy' = Variable.declare_term rhs lthy;
val ((_, (_, def)), lthy'') =
Local_Theory.define ((b, mx), ((Thm.def_binding_optional b name, atts), rhs)) lthy';
in (Thm.symmetric def, lthy'') end;
fun augment_with_defs _ [] _ = pair []
(*quasi-inhomogeneous type: definitions demand local theory rather than bare proof context*)
| augment_with_defs prep_term raw_defs deps =
Local_Theory.begin_nested
#> snd
#> fold Locale.activate_declarations deps
#> fold_map (augment_with_def prep_term) raw_defs
#> Local_Theory.end_nested_result Morphism.fact;
fun prep_interpretation prep_expr prep_term
expression raw_defs initial_ctxt =
let
val ((propss, eq_propss, deps, eqnss, export), expr_ctxt) = prep_expr expression initial_ctxt;
val (def_eqns, def_ctxt) =
augment_with_defs prep_term raw_defs deps expr_ctxt;
val export' = Proof_Context.export_morphism def_ctxt expr_ctxt;
in (((propss, eq_propss, deps, eqnss, export, export'), def_eqns), def_ctxt) end;
in
fun cert_interpretation expression =
prep_interpretation Expression.cert_goal_expression Syntax.check_term expression;
fun read_interpretation expression =
prep_interpretation Expression.read_goal_expression Syntax.read_term expression;
end;
(* interpretation machinery *)
local
fun abs_def_rule eqns ctxt =
(map (Local_Defs.abs_def_rule ctxt) (maps snd eqns), ctxt);
fun note_eqns_register note add_registration
deps eqnss witss def_eqns thms export export' ctxt =
let
val factss = thms
|> unflat ((map o map) #1 eqnss)
|> map2 (map2 (fn b => fn eq =>
(b, [([Morphism.thm export (Thm.transfer' ctxt eq)], [])]))) ((map o map) #1 eqnss);
val (eqnss', ctxt') =
fold_map (fn facts => note Thm.theoremK facts #-> abs_def_rule) factss ctxt;
val defs = (Binding.empty_atts, [(map (Morphism.thm (export' $> export)) def_eqns, [])]);
val (eqns', ctxt'') = ctxt' |> note Thm.theoremK [defs] |-> abs_def_rule;
val deps' =
(deps ~~ witss) |> map (fn ((dep, morph), wits) =>
(dep, morph $> Element.satisfy_morphism (map (Element.transform_witness export') wits)));
fun register (dep, eqns) ctxt =
ctxt |> add_registration
{inst = dep,
mixin =
Option.map (rpair true)
(Element.eq_morphism (Proof_Context.theory_of ctxt) (eqns @ eqns')),
export = export};
in ctxt'' |> fold register (deps' ~~ eqnss') end;
in
fun generic_interpretation prep_interpretation setup_proof note add_registration
expression raw_defs initial_ctxt =
let
val (((propss, eq_propss, deps, eqnss, export, export'), def_eqns), goal_ctxt) =
prep_interpretation expression raw_defs initial_ctxt;
fun after_qed witss eqns =
note_eqns_register note add_registration deps eqnss witss def_eqns eqns export export';
in setup_proof after_qed propss (flat eq_propss) goal_ctxt end;
end;
(** interfaces **)
(* interpretation in proofs *)
local
fun setup_proof state after_qed propss eqns goal_ctxt =
Element.witness_local_proof_eqs
(fn witss => fn eqns => Proof.map_context (after_qed witss eqns) #> Proof.reset_facts)
"interpret" propss eqns goal_ctxt state;
fun add_registration_proof registration ctxt = ctxt
|> Proof_Context.set_stmt false
|> Context.proof_map (Locale.add_registration registration)
|> Proof_Context.restore_stmt ctxt;
fun gen_interpret prep_interpretation expression state =
Proof.assert_forward_or_chain state
|> Proof.context_of
|> generic_interpretation prep_interpretation (setup_proof state)
Attrib.local_notes add_registration_proof expression [];
in
val interpret = gen_interpret cert_interpretation;
val interpret_cmd = gen_interpret read_interpretation;
end;
(* interpretation in local theories *)
val add_registration_local_theory =
Named_Target.revoke_reinitializability oo Generic_Target.local_interpretation;
fun interpretation expression =
generic_interpretation cert_interpretation Element.witness_proof_eqs
Local_Theory.notes_kind add_registration_local_theory expression [];
fun interpretation_cmd expression =
generic_interpretation read_interpretation Element.witness_proof_eqs
Local_Theory.notes_kind add_registration_local_theory expression [];
(* interpretation into global theories *)
fun global_interpretation expression =
generic_interpretation cert_interpretation Element.witness_proof_eqs
Local_Theory.notes_kind Local_Theory.theory_registration expression;
fun global_interpretation_cmd expression =
generic_interpretation read_interpretation Element.witness_proof_eqs
Local_Theory.notes_kind Local_Theory.theory_registration expression;
(* interpretation between locales *)
fun sublocale expression =
generic_interpretation cert_interpretation Element.witness_proof_eqs
Local_Theory.notes_kind Local_Theory.locale_dependency expression;
fun sublocale_cmd expression =
generic_interpretation read_interpretation Element.witness_proof_eqs
Local_Theory.notes_kind Local_Theory.locale_dependency expression;
local
fun gen_global_sublocale prep_loc prep_interpretation
raw_locale expression raw_defs thy =
let
val lthy = Named_Target.init [] (prep_loc thy raw_locale) thy;
fun setup_proof after_qed =
Element.witness_proof_eqs
(fn wits => fn eqs => after_qed wits eqs #> Local_Theory.exit);
in
lthy |>
generic_interpretation prep_interpretation setup_proof
Local_Theory.notes_kind Local_Theory.locale_dependency expression raw_defs
end;
in
fun global_sublocale expression =
gen_global_sublocale (K I) cert_interpretation expression;
fun global_sublocale_cmd raw_expression =
gen_global_sublocale Locale.check read_interpretation raw_expression;
end;
(* mixed Isar interface *)
local
fun register_or_activate lthy =
if Named_Target.is_theory lthy
then Local_Theory.theory_registration
else add_registration_local_theory;
fun gen_isar_interpretation prep_interpretation expression lthy =
generic_interpretation prep_interpretation Element.witness_proof_eqs
Local_Theory.notes_kind (register_or_activate lthy) expression [] lthy;
in
fun isar_interpretation expression =
gen_isar_interpretation cert_interpretation expression;
fun isar_interpretation_cmd raw_expression =
gen_isar_interpretation read_interpretation raw_expression;
end;
end;