option parallel_proofs_reuse_timing controls reuse of log information -- since it is not always beneficial for performance;
session ZF (main) = Pure +
description {*
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1995 University of Cambridge
Zermelo-Fraenkel Set Theory on top of classical First-Order Logic.
This theory is the work of Martin Coen, Philippe Noel and Lawrence Paulson.
*}
options [document_graph]
theories
Main
Main_ZFC
files "document/root.tex"
session "ZF-AC" in AC = ZF +
description {*
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1995 University of Cambridge
Proofs of AC-equivalences, due to Krzysztof Grabczewski.
*}
options [document_graph]
theories
WO6_WO1
WO1_WO7
AC7_AC9
WO1_AC
AC15_WO6
WO2_AC16
AC16_WO4
AC17_AC1
AC18_AC19
DC
files "document/root.tex" "document/root.bib"
session "ZF-Coind" in Coind = ZF +
description {*
Author: Jacob Frost, Cambridge University Computer Laboratory
Copyright 1995 University of Cambridge
Coind -- A Coinduction Example.
Based upon the article
Robin Milner and Mads Tofte,
Co-induction in Relational Semantics,
Theoretical Computer Science 87 (1991), pages 209-220.
Written up as
Jacob Frost, A Case Study of Co_induction in Isabelle
Report, Computer Lab, University of Cambridge (1995).
*}
options [document = false]
theories ECR
session "ZF-Constructible" in Constructible = ZF +
description {* Inner Models, Absoluteness and Consistency Proofs. *}
options [document_graph]
theories DPow_absolute AC_in_L Rank_Separation
files "document/root.tex" "document/root.bib"
session "ZF-IMP" in IMP = ZF +
description {*
Author: Heiko Loetzbeyer & Robert Sandner, TUM
Copyright 1994 TUM
Formalization of the denotational and operational semantics of a
simple while-language, including an equivalence proof.
The whole development essentially formalizes/transcribes
chapters 2 and 5 of
Glynn Winskel. The Formal Semantics of Programming Languages.
MIT Press, 1993.
*}
options [document = false]
theories Equiv
files "document/root.tex" "document/root.bib"
session "ZF-Induct" in Induct = ZF +
description {*
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 2001 University of Cambridge
Inductive definitions.
*}
theories
(** Datatypes **)
Datatypes (*sample datatypes*)
Binary_Trees (*binary trees*)
Term (*recursion over the list functor*)
Ntree (*variable-branching trees; function demo*)
Tree_Forest (*mutual recursion*)
Brouwer (*Infinite-branching trees*)
Mutil (*mutilated chess board*)
(*by Sidi Ehmety: Multisets. A parent is FoldSet, the "fold" function for
finite sets*)
Multiset
Rmap (*mapping a relation over a list*)
PropLog (*completeness of propositional logic*)
(*two Coq examples by Christine Paulin-Mohring*)
ListN
Acc
Comb (*Combinatory Logic example*)
Primrec (*Primitive recursive functions*)
files "document/root.tex"
session "ZF-Resid" in Resid = ZF +
description {*
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1995 University of Cambridge
Residuals -- a proof of the Church-Rosser Theorem for the
untyped lambda-calculus.
By Ole Rasmussen, following the Coq proof given in
Gerard Huet. Residual Theory in Lambda-Calculus: A Formal Development.
J. Functional Programming 4(3) 1994, 371-394.
*}
options [document = false]
theories Confluence
session "ZF-UNITY" in UNITY = ZF +
description {*
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge
ZF/UNITY proofs.
*}
options [document = false]
theories
(*Simple examples: no composition*)
Mutex
(*Basic meta-theory*)
Guar
(*Prefix relation; the Allocator example*)
Distributor Merge ClientImpl AllocImpl
session "ZF-ex" in ex = ZF +
description {*
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Miscellaneous examples for Zermelo-Fraenkel Set Theory.
*}
options [document = false]
theories
misc
Ring (*abstract algebra*)
Commutation (*abstract Church-Rosser theory*)
Primes (*GCD theory*)
NatSum (*Summing integers, squares, cubes, etc.*)
Ramsey (*Simple form of Ramsey's theorem*)
Limit (*Inverse limit construction of domains*)
BinEx (*Binary integer arithmetic*)
LList CoUnit (*CoDatatypes*)