(* Title: CCL/Hered.thy
Author: Martin Coen
Copyright 1993 University of Cambridge
*)
header {* Hereditary Termination -- cf. Martin Lo\"f *}
theory Hered
imports Type
begin
text {*
Note that this is based on an untyped equality and so @{text "lam
x. b(x)"} is only hereditarily terminating if @{text "ALL x. b(x)"}
is. Not so useful for functions!
*}
definition HTTgen :: "i set => i set" where
"HTTgen(R) ==
{t. t=true | t=false | (EX a b. t= <a, b> & a : R & b : R) |
(EX f. t = lam x. f(x) & (ALL x. f(x) : R))}"
definition HTT :: "i set"
where "HTT == gfp(HTTgen)"
subsection {* Hereditary Termination *}
lemma HTTgen_mono: "mono(%X. HTTgen(X))"
apply (unfold HTTgen_def)
apply (rule monoI)
apply blast
done
lemma HTTgenXH:
"t : HTTgen(A) <-> t=true | t=false | (EX a b. t=<a,b> & a : A & b : A) |
(EX f. t=lam x. f(x) & (ALL x. f(x) : A))"
apply (unfold HTTgen_def)
apply blast
done
lemma HTTXH:
"t : HTT <-> t=true | t=false | (EX a b. t=<a,b> & a : HTT & b : HTT) |
(EX f. t=lam x. f(x) & (ALL x. f(x) : HTT))"
apply (rule HTTgen_mono [THEN HTT_def [THEN def_gfp_Tarski], THEN XHlemma1, unfolded HTTgen_def])
apply blast
done
subsection {* Introduction Rules for HTT *}
lemma HTT_bot: "~ bot : HTT"
by (blast dest: HTTXH [THEN iffD1])
lemma HTT_true: "true : HTT"
by (blast intro: HTTXH [THEN iffD2])
lemma HTT_false: "false : HTT"
by (blast intro: HTTXH [THEN iffD2])
lemma HTT_pair: "<a,b> : HTT <-> a : HTT & b : HTT"
apply (rule HTTXH [THEN iff_trans])
apply blast
done
lemma HTT_lam: "lam x. f(x) : HTT <-> (ALL x. f(x) : HTT)"
apply (rule HTTXH [THEN iff_trans])
apply auto
done
lemmas HTT_rews1 = HTT_bot HTT_true HTT_false HTT_pair HTT_lam
lemma HTT_rews2:
"one : HTT"
"inl(a) : HTT <-> a : HTT"
"inr(b) : HTT <-> b : HTT"
"zero : HTT"
"succ(n) : HTT <-> n : HTT"
"[] : HTT"
"x$xs : HTT <-> x : HTT & xs : HTT"
by (simp_all add: data_defs HTT_rews1)
lemmas HTT_rews = HTT_rews1 HTT_rews2
subsection {* Coinduction for HTT *}
lemma HTT_coinduct: "[| t : R; R <= HTTgen(R) |] ==> t : HTT"
apply (erule HTT_def [THEN def_coinduct])
apply assumption
done
lemma HTT_coinduct3:
"[| t : R; R <= HTTgen(lfp(%x. HTTgen(x) Un R Un HTT)) |] ==> t : HTT"
apply (erule HTTgen_mono [THEN [3] HTT_def [THEN def_coinduct3]])
apply assumption
done
lemma HTTgenIs:
"true : HTTgen(R)"
"false : HTTgen(R)"
"[| a : R; b : R |] ==> <a,b> : HTTgen(R)"
"!!b. [| !!x. b(x) : R |] ==> lam x. b(x) : HTTgen(R)"
"one : HTTgen(R)"
"a : lfp(%x. HTTgen(x) Un R Un HTT) ==> inl(a) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))"
"b : lfp(%x. HTTgen(x) Un R Un HTT) ==> inr(b) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))"
"zero : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))"
"n : lfp(%x. HTTgen(x) Un R Un HTT) ==> succ(n) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))"
"[] : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))"
"[| h : lfp(%x. HTTgen(x) Un R Un HTT); t : lfp(%x. HTTgen(x) Un R Un HTT) |] ==>
h$t : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))"
unfolding data_defs by (genIs HTTgenXH HTTgen_mono)+
subsection {* Formation Rules for Types *}
lemma UnitF: "Unit <= HTT"
by (simp add: subsetXH UnitXH HTT_rews)
lemma BoolF: "Bool <= HTT"
by (fastforce simp: subsetXH BoolXH iff: HTT_rews)
lemma PlusF: "[| A <= HTT; B <= HTT |] ==> A + B <= HTT"
by (fastforce simp: subsetXH PlusXH iff: HTT_rews)
lemma SigmaF: "[| A <= HTT; !!x. x:A ==> B(x) <= HTT |] ==> SUM x:A. B(x) <= HTT"
by (fastforce simp: subsetXH SgXH HTT_rews)
(*** Formation Rules for Recursive types - using coinduction these only need ***)
(*** exhaution rule for type-former ***)
(*Proof by induction - needs induction rule for type*)
lemma "Nat <= HTT"
apply (simp add: subsetXH)
apply clarify
apply (erule Nat_ind)
apply (fastforce iff: HTT_rews)+
done
lemma NatF: "Nat <= HTT"
apply clarify
apply (erule HTT_coinduct3)
apply (fast intro: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] dest: NatXH [THEN iffD1])
done
lemma ListF: "A <= HTT ==> List(A) <= HTT"
apply clarify
apply (erule HTT_coinduct3)
apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI]
subsetD [THEN HTTgen_mono [THEN ci3_AI]]
dest: ListXH [THEN iffD1])
done
lemma ListsF: "A <= HTT ==> Lists(A) <= HTT"
apply clarify
apply (erule HTT_coinduct3)
apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI]
subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: ListsXH [THEN iffD1])
done
lemma IListsF: "A <= HTT ==> ILists(A) <= HTT"
apply clarify
apply (erule HTT_coinduct3)
apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI]
subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: IListsXH [THEN iffD1])
done
end