author | wenzelm |
Mon, 22 Oct 2001 17:58:11 +0200 | |
changeset 11879 | 1a386a1e002c |
parent 6053 | 8a1059aa01f0 |
child 13134 | bf37a3049251 |
permissions | -rw-r--r-- |
(* Title: ZF/AC.thy ID: $Id$ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1994 University of Cambridge The Axiom of Choice This definition comes from Halmos (1960), page 59. *) AC = func + constdefs (*Needs to be visible for Zorn.thy*) increasing :: i=>i "increasing(A) == {f: Pow(A)->Pow(A). ALL x. x<=A --> x<=f`x}" rules AC "[| a: A; !!x. x:A ==> (EX y. y:B(x)) |] ==> EX z. z : Pi(A,B)" end