(* Title: ZF/epsilon.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
Epsilon induction and recursion
*)
(*** Basic closure properties ***)
Goalw [eclose_def] "A <= eclose(A)";
by (rtac (nat_rec_0 RS equalityD2 RS subset_trans) 1);
by (rtac (nat_0I RS UN_upper) 1);
qed "arg_subset_eclose";
bind_thm ("arg_into_eclose", arg_subset_eclose RS subsetD);
Goalw [eclose_def,Transset_def] "Transset(eclose(A))";
by (rtac (subsetI RS ballI) 1);
by (etac UN_E 1);
by (rtac (nat_succI RS UN_I) 1);
by (assume_tac 1);
by (etac (nat_rec_succ RS ssubst) 1);
by (etac UnionI 1);
by (assume_tac 1);
qed "Transset_eclose";
(* x : eclose(A) ==> x <= eclose(A) *)
bind_thm ("eclose_subset",
rewrite_rule [Transset_def] Transset_eclose RS bspec);
(* [| A : eclose(B); c : A |] ==> c : eclose(B) *)
bind_thm ("ecloseD", eclose_subset RS subsetD);
bind_thm ("arg_in_eclose_sing", arg_subset_eclose RS singleton_subsetD);
bind_thm ("arg_into_eclose_sing", arg_in_eclose_sing RS ecloseD);
(* This is epsilon-induction for eclose(A); see also eclose_induct_down...
[| a: eclose(A); !!x. [| x: eclose(A); ALL y:x. P(y) |] ==> P(x)
|] ==> P(a)
*)
bind_thm ("eclose_induct", Transset_eclose RSN (2, Transset_induct));
(*Epsilon induction*)
val prems = Goal
"[| !!x. ALL y:x. P(y) ==> P(x) |] ==> P(a)";
by (rtac (arg_in_eclose_sing RS eclose_induct) 1);
by (eresolve_tac prems 1);
qed "eps_induct";
(*Perform epsilon-induction on i. *)
fun eps_ind_tac a =
EVERY' [res_inst_tac [("a",a)] eps_induct,
rename_last_tac a ["1"]];
(*** Leastness of eclose ***)
(** eclose(A) is the least transitive set including A as a subset. **)
Goalw [Transset_def]
"[| Transset(X); A<=X; n: nat |] ==> \
\ nat_rec(n, A, %m r. Union(r)) <= X";
by (etac nat_induct 1);
by (asm_simp_tac (simpset() addsimps [nat_rec_0]) 1);
by (asm_simp_tac (simpset() addsimps [nat_rec_succ]) 1);
by (Blast_tac 1);
qed "eclose_least_lemma";
Goalw [eclose_def]
"[| Transset(X); A<=X |] ==> eclose(A) <= X";
by (rtac (eclose_least_lemma RS UN_least) 1);
by (REPEAT (assume_tac 1));
qed "eclose_least";
(*COMPLETELY DIFFERENT induction principle from eclose_induct!!*)
val [major,base,step] = Goal
"[| a: eclose(b); \
\ !!y. [| y: b |] ==> P(y); \
\ !!y z. [| y: eclose(b); P(y); z: y |] ==> P(z) \
\ |] ==> P(a)";
by (rtac (major RSN (3, eclose_least RS subsetD RS CollectD2)) 1);
by (rtac (CollectI RS subsetI) 2);
by (etac (arg_subset_eclose RS subsetD) 2);
by (etac base 2);
by (rewtac Transset_def);
by (blast_tac (claset() addIs [step,ecloseD]) 1);
qed "eclose_induct_down";
Goal "Transset(X) ==> eclose(X) = X";
by (etac ([eclose_least, arg_subset_eclose] MRS equalityI) 1);
by (rtac subset_refl 1);
qed "Transset_eclose_eq_arg";
(*** Epsilon recursion ***)
(*Unused...*)
Goal "[| A: eclose(B); B: eclose(C) |] ==> A: eclose(C)";
by (rtac ([Transset_eclose, eclose_subset] MRS eclose_least RS subsetD) 1);
by (REPEAT (assume_tac 1));
qed "mem_eclose_trans";
(*Variant of the previous lemma in a useable form for the sequel*)
Goal "[| A: eclose({B}); B: eclose({C}) |] ==> A: eclose({C})";
by (rtac ([Transset_eclose, singleton_subsetI] MRS eclose_least RS subsetD) 1);
by (REPEAT (assume_tac 1));
qed "mem_eclose_sing_trans";
Goalw [Transset_def] "[| Transset(i); j:i |] ==> Memrel(i)-``{j} = j";
by (Blast_tac 1);
qed "under_Memrel";
(* j : eclose(A) ==> Memrel(eclose(A)) -`` j = j *)
bind_thm ("under_Memrel_eclose", Transset_eclose RS under_Memrel);
bind_thm ("wfrec_ssubst", standard (wf_Memrel RS wfrec RS ssubst));
val [kmemj,jmemi] = goal (the_context ())
"[| k:eclose({j}); j:eclose({i}) |] ==> \
\ wfrec(Memrel(eclose({i})), k, H) = wfrec(Memrel(eclose({j})), k, H)";
by (rtac (kmemj RS eclose_induct) 1);
by (rtac wfrec_ssubst 1);
by (rtac wfrec_ssubst 1);
by (asm_simp_tac (simpset() addsimps [under_Memrel_eclose,
jmemi RSN (2,mem_eclose_sing_trans)]) 1);
qed "wfrec_eclose_eq";
Goal
"k: i ==> wfrec(Memrel(eclose({i})),k,H) = wfrec(Memrel(eclose({k})),k,H)";
by (rtac (arg_in_eclose_sing RS wfrec_eclose_eq) 1);
by (etac arg_into_eclose_sing 1);
qed "wfrec_eclose_eq2";
Goalw [transrec_def]
"transrec(a,H) = H(a, lam x:a. transrec(x,H))";
by (rtac wfrec_ssubst 1);
by (simp_tac (simpset() addsimps [wfrec_eclose_eq2, arg_in_eclose_sing,
under_Memrel_eclose]) 1);
qed "transrec";
(*Avoids explosions in proofs; resolve it with a meta-level definition.*)
val rew::prems = Goal
"[| !!x. f(x)==transrec(x,H) |] ==> f(a) = H(a, lam x:a. f(x))";
by (rewtac rew);
by (REPEAT (resolve_tac (prems@[transrec]) 1));
qed "def_transrec";
val prems = Goal
"[| !!x u. [| x:eclose({a}); u: Pi(x,B) |] ==> H(x,u) : B(x) \
\ |] ==> transrec(a,H) : B(a)";
by (res_inst_tac [("i", "a")] (arg_in_eclose_sing RS eclose_induct) 1);
by (stac transrec 1);
by (REPEAT (ares_tac (prems @ [lam_type]) 1 ORELSE etac bspec 1));
qed "transrec_type";
Goal "Ord(i) ==> eclose({i}) <= succ(i)";
by (etac (Ord_is_Transset RS Transset_succ RS eclose_least) 1);
by (rtac (succI1 RS singleton_subsetI) 1);
qed "eclose_sing_Ord";
val prems = Goal
"[| j: i; Ord(i); \
\ !!x u. [| x: i; u: Pi(x,B) |] ==> H(x,u) : B(x) \
\ |] ==> transrec(j,H) : B(j)";
by (rtac transrec_type 1);
by (resolve_tac prems 1);
by (rtac (Ord_in_Ord RS eclose_sing_Ord RS subsetD RS succE) 1);
by (DEPTH_SOLVE (ares_tac prems 1 ORELSE eresolve_tac [ssubst,Ord_trans] 1));
qed "Ord_transrec_type";
(*** Rank ***)
(*NOT SUITABLE FOR REWRITING -- RECURSIVE!*)
Goal "rank(a) = (UN y:a. succ(rank(y)))";
by (stac (rank_def RS def_transrec) 1);
by (Simp_tac 1);
qed "rank";
Goal "Ord(rank(a))";
by (eps_ind_tac "a" 1);
by (stac rank 1);
by (rtac (Ord_succ RS Ord_UN) 1);
by (etac bspec 1);
by (assume_tac 1);
qed "Ord_rank";
Addsimps [Ord_rank];
Goal "Ord(i) ==> rank(i) = i";
by (etac trans_induct 1);
by (stac rank 1);
by (asm_simp_tac (simpset() addsimps [Ord_equality]) 1);
qed "rank_of_Ord";
Goal "a:b ==> rank(a) < rank(b)";
by (res_inst_tac [("a1","b")] (rank RS ssubst) 1);
by (etac (UN_I RS ltI) 1);
by (rtac Ord_UN 2);
by Auto_tac;
qed "rank_lt";
Goal "a: eclose(b) ==> rank(a) < rank(b)";
by (etac eclose_induct_down 1);
by (etac rank_lt 1);
by (etac (rank_lt RS lt_trans) 1);
by (assume_tac 1);
qed "eclose_rank_lt";
Goal "a<=b ==> rank(a) le rank(b)";
by (rtac subset_imp_le 1);
by (stac rank 1);
by (stac rank 1);
by Auto_tac;
qed "rank_mono";
Goal "rank(Pow(a)) = succ(rank(a))";
by (rtac (rank RS trans) 1);
by (rtac le_anti_sym 1);
by (rtac UN_upper_le 2);
by (rtac UN_least_le 1);
by (auto_tac (claset() addIs [rank_mono], simpset()));
qed "rank_Pow";
Goal "rank(0) = 0";
by (rtac (rank RS trans) 1);
by (Blast_tac 1);
qed "rank_0";
Goal "rank(succ(x)) = succ(rank(x))";
by (rtac (rank RS trans) 1);
by (rtac ([UN_least, succI1 RS UN_upper] MRS equalityI) 1);
by (etac succE 1);
by (Blast_tac 1);
by (etac (rank_lt RS leI RS succ_leI RS le_imp_subset) 1);
qed "rank_succ";
Addsimps [rank_0, rank_succ];
Goal "rank(Union(A)) = (UN x:A. rank(x))";
by (rtac equalityI 1);
by (rtac (rank_mono RS le_imp_subset RS UN_least) 2);
by (etac Union_upper 2);
by (stac rank 1);
by (rtac UN_least 1);
by (etac UnionE 1);
by (rtac subset_trans 1);
by (etac (RepFunI RS Union_upper) 2);
by (etac (rank_lt RS succ_leI RS le_imp_subset) 1);
qed "rank_Union";
Goal "rank(eclose(a)) = rank(a)";
by (rtac le_anti_sym 1);
by (rtac (arg_subset_eclose RS rank_mono) 2);
by (res_inst_tac [("a1","eclose(a)")] (rank RS ssubst) 1);
by (rtac (Ord_rank RS UN_least_le) 1);
by (etac (eclose_rank_lt RS succ_leI) 1);
qed "rank_eclose";
Goalw [Pair_def] "rank(a) < rank(<a,b>)";
by (rtac (consI1 RS rank_lt RS lt_trans) 1);
by (rtac (consI1 RS consI2 RS rank_lt) 1);
qed "rank_pair1";
Goalw [Pair_def] "rank(b) < rank(<a,b>)";
by (rtac (consI1 RS consI2 RS rank_lt RS lt_trans) 1);
by (rtac (consI1 RS consI2 RS rank_lt) 1);
qed "rank_pair2";
(*Not clear how to remove the P(a) condition, since the "then" part
must refer to "a"*)
Goal "P(a) ==> (THE x. P(x)) = (if (EX!x. P(x)) then a else 0)";
by (asm_simp_tac (simpset() addsimps [the_0, the_equality2]) 1);
qed "the_equality_if";
(*The premise is needed not just to fix i but to ensure f~=0*)
Goalw [apply_def] "i : domain(f) ==> rank(f`i) < rank(f)";
by (Clarify_tac 1);
by (subgoal_tac "rank(y) < rank(f)" 1);
by (blast_tac (claset() addIs [lt_trans, rank_lt, rank_pair2]) 2);
by (subgoal_tac "0 < rank(f)" 1);
by (etac (Ord_rank RS Ord_0_le RS lt_trans1) 2);
by (asm_simp_tac (simpset() addsimps [the_equality_if]) 1);
qed "rank_apply";
(*** Corollaries of leastness ***)
Goal "A:B ==> eclose(A)<=eclose(B)";
by (rtac (Transset_eclose RS eclose_least) 1);
by (etac (arg_into_eclose RS eclose_subset) 1);
qed "mem_eclose_subset";
Goal "A<=B ==> eclose(A) <= eclose(B)";
by (rtac (Transset_eclose RS eclose_least) 1);
by (etac subset_trans 1);
by (rtac arg_subset_eclose 1);
qed "eclose_mono";
(** Idempotence of eclose **)
Goal "eclose(eclose(A)) = eclose(A)";
by (rtac equalityI 1);
by (rtac ([Transset_eclose, subset_refl] MRS eclose_least) 1);
by (rtac arg_subset_eclose 1);
qed "eclose_idem";
(** Transfinite recursion for definitions based on the
three cases of ordinals **)
Goal "transrec2(0,a,b) = a";
by (rtac (transrec2_def RS def_transrec RS trans) 1);
by (Simp_tac 1);
qed "transrec2_0";
Goal "(THE j. i=j) = i";
by (Blast_tac 1);
qed "THE_eq";
Goal "transrec2(succ(i),a,b) = b(i, transrec2(i,a,b))";
by (rtac (transrec2_def RS def_transrec RS trans) 1);
by (simp_tac (simpset() addsimps [THE_eq, if_P]) 1);
by (Blast_tac 1);
qed "transrec2_succ";
Goal "Limit(i) ==> transrec2(i,a,b) = (UN j<i. transrec2(j,a,b))";
by (rtac (transrec2_def RS def_transrec RS trans) 1);
by (Simp_tac 1);
by (blast_tac (claset() addSDs [Limit_has_0] addSEs [succ_LimitE]) 1);
qed "transrec2_Limit";
Addsimps [transrec2_0, transrec2_succ];
(** recursor -- better than nat_rec; the succ case has no type requirement! **)
(*NOT suitable for rewriting*)
val lemma = recursor_def RS def_transrec RS trans;
Goal "recursor(a,b,0) = a";
by (rtac (nat_case_0 RS lemma) 1);
qed "recursor_0";
Goal "recursor(a,b,succ(m)) = b(m, recursor(a,b,m))";
by (rtac lemma 1);
by (Simp_tac 1);
qed "recursor_succ";
(** rec: old version for compatibility **)
Goalw [rec_def] "rec(0,a,b) = a";
by (rtac recursor_0 1);
qed "rec_0";
Goalw [rec_def] "rec(succ(m),a,b) = b(m, rec(m,a,b))";
by (rtac recursor_succ 1);
qed "rec_succ";
Addsimps [rec_0, rec_succ];
val major::prems = Goal
"[| n: nat; \
\ a: C(0); \
\ !!m z. [| m: nat; z: C(m) |] ==> b(m,z): C(succ(m)) \
\ |] ==> rec(n,a,b) : C(n)";
by (rtac (major RS nat_induct) 1);
by (ALLGOALS (asm_simp_tac (simpset() addsimps prems)));
qed "rec_type";