| author | wenzelm |
| Wed, 09 May 2007 19:37:18 +0200 | |
| changeset 22893 | 1b0f4e6f81aa |
| parent 19469 | 958d2f2dd8d4 |
| permissions | -rw-r--r-- |
(* Title: HOL/Complex/ex/Arithmetic_Series_Complex ID: $Id$ Author: Benjamin Porter, 2006 *) header {* Arithmetic Series for Reals *} theory Arithmetic_Series_Complex imports Complex_Main begin lemma arith_series_real: "(2::real) * (\<Sum>i\<in>{..<n}. a + of_nat i * d) = of_nat n * (a + (a + of_nat(n - 1)*d))" proof - have "((1::real) + 1) * (\<Sum>i\<in>{..<n}. a + of_nat(i)*d) = of_nat(n) * (a + (a + of_nat(n - 1)*d))" by (rule arith_series_general) thus ?thesis by simp qed end