(* Title: HOL/Lambda/ListApplication.thy
ID: $Id$
Author: Tobias Nipkow
Copyright 1998 TU Muenchen
*)
header {* Application of a term to a list of terms *}
theory ListApplication imports Lambda begin
abbreviation (output)
list_application :: "dB => dB list => dB" (infixl "\<degree>\<degree>" 150)
"t \<degree>\<degree> ts = foldl (op \<degree>) t ts"
lemma apps_eq_tail_conv [iff]: "(r \<degree>\<degree> ts = s \<degree>\<degree> ts) = (r = s)"
by (induct ts rule: rev_induct) auto
lemma Var_eq_apps_conv [iff]: "(Var m = s \<degree>\<degree> ss) = (Var m = s \<and> ss = [])"
by (induct ss fixing: s) auto
lemma Var_apps_eq_Var_apps_conv [iff]:
"(Var m \<degree>\<degree> rs = Var n \<degree>\<degree> ss) = (m = n \<and> rs = ss)"
apply (induct rs fixing: ss rule: rev_induct)
apply simp
apply blast
apply (induct_tac ss rule: rev_induct)
apply auto
done
lemma App_eq_foldl_conv:
"(r \<degree> s = t \<degree>\<degree> ts) =
(if ts = [] then r \<degree> s = t
else (\<exists>ss. ts = ss @ [s] \<and> r = t \<degree>\<degree> ss))"
apply (rule_tac xs = ts in rev_exhaust)
apply auto
done
lemma Abs_eq_apps_conv [iff]:
"(Abs r = s \<degree>\<degree> ss) = (Abs r = s \<and> ss = [])"
by (induct ss rule: rev_induct) auto
lemma apps_eq_Abs_conv [iff]: "(s \<degree>\<degree> ss = Abs r) = (s = Abs r \<and> ss = [])"
by (induct ss rule: rev_induct) auto
lemma Abs_apps_eq_Abs_apps_conv [iff]:
"(Abs r \<degree>\<degree> rs = Abs s \<degree>\<degree> ss) = (r = s \<and> rs = ss)"
apply (induct rs fixing: ss rule: rev_induct)
apply simp
apply blast
apply (induct_tac ss rule: rev_induct)
apply auto
done
lemma Abs_App_neq_Var_apps [iff]:
"Abs s \<degree> t \<noteq> Var n \<degree>\<degree> ss"
by (induct ss fixing: s t rule: rev_induct) auto
lemma Var_apps_neq_Abs_apps [iff]:
"Var n \<degree>\<degree> ts \<noteq> Abs r \<degree>\<degree> ss"
apply (induct ss fixing: ts rule: rev_induct)
apply simp
apply (induct_tac ts rule: rev_induct)
apply auto
done
lemma ex_head_tail:
"\<exists>ts h. t = h \<degree>\<degree> ts \<and> ((\<exists>n. h = Var n) \<or> (\<exists>u. h = Abs u))"
apply (induct t)
apply (rule_tac x = "[]" in exI)
apply simp
apply clarify
apply (rename_tac ts1 ts2 h1 h2)
apply (rule_tac x = "ts1 @ [h2 \<degree>\<degree> ts2]" in exI)
apply simp
apply simp
done
lemma size_apps [simp]:
"size (r \<degree>\<degree> rs) = size r + foldl (op +) 0 (map size rs) + length rs"
by (induct rs rule: rev_induct) auto
lemma lem0: "[| (0::nat) < k; m <= n |] ==> m < n + k"
by simp
lemma lift_map [simp]:
"lift (t \<degree>\<degree> ts) i = lift t i \<degree>\<degree> map (\<lambda>t. lift t i) ts"
by (induct ts fixing: t) simp_all
lemma subst_map [simp]:
"subst (t \<degree>\<degree> ts) u i = subst t u i \<degree>\<degree> map (\<lambda>t. subst t u i) ts"
by (induct ts fixing: t) simp_all
lemma app_last: "(t \<degree>\<degree> ts) \<degree> u = t \<degree>\<degree> (ts @ [u])"
by simp
text {* \medskip A customized induction schema for @{text "\<degree>\<degree>"}. *}
lemma lem:
assumes "!!n ts. \<forall>t \<in> set ts. P t ==> P (Var n \<degree>\<degree> ts)"
and "!!u ts. [| P u; \<forall>t \<in> set ts. P t |] ==> P (Abs u \<degree>\<degree> ts)"
shows "size t = n \<Longrightarrow> P t"
apply (induct n fixing: t rule: nat_less_induct)
apply (cut_tac t = t in ex_head_tail)
apply clarify
apply (erule disjE)
apply clarify
apply (rule prems)
apply clarify
apply (erule allE, erule impE)
prefer 2
apply (erule allE, erule mp, rule refl)
apply simp
apply (rule lem0)
apply force
apply (rule elem_le_sum)
apply force
apply clarify
apply (rule prems)
apply (erule allE, erule impE)
prefer 2
apply (erule allE, erule mp, rule refl)
apply simp
apply clarify
apply (erule allE, erule impE)
prefer 2
apply (erule allE, erule mp, rule refl)
apply simp
apply (rule le_imp_less_Suc)
apply (rule trans_le_add1)
apply (rule trans_le_add2)
apply (rule elem_le_sum)
apply force
done
theorem Apps_dB_induct:
assumes "!!n ts. \<forall>t \<in> set ts. P t ==> P (Var n \<degree>\<degree> ts)"
and "!!u ts. [| P u; \<forall>t \<in> set ts. P t |] ==> P (Abs u \<degree>\<degree> ts)"
shows "P t"
apply (rule_tac t = t in lem)
prefer 3
apply (rule refl)
apply (assumption | rule prems)+
done
end