(* Title: HOL/Lambda/ListOrder.thy
ID: $Id$
Author: Tobias Nipkow
Copyright 1998 TU Muenchen
*)
header {* Lifting an order to lists of elements *}
theory ListOrder imports Accessible_Part begin
text {*
Lifting an order to lists of elements, relating exactly one
element.
*}
definition
step1 :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
"step1 r =
{(ys, xs). \<exists>us z z' vs. xs = us @ z # vs \<and> (z', z) \<in> r \<and> ys =
us @ z' # vs}"
lemma step1_converse [simp]: "step1 (r^-1) = (step1 r)^-1"
apply (unfold step1_def)
apply blast
done
lemma in_step1_converse [iff]: "(p \<in> step1 (r^-1)) = (p \<in> (step1 r)^-1)"
apply auto
done
lemma not_Nil_step1 [iff]: "([], xs) \<notin> step1 r"
apply (unfold step1_def)
apply blast
done
lemma not_step1_Nil [iff]: "(xs, []) \<notin> step1 r"
apply (unfold step1_def)
apply blast
done
lemma Cons_step1_Cons [iff]:
"((y # ys, x # xs) \<in> step1 r) =
((y, x) \<in> r \<and> xs = ys \<or> x = y \<and> (ys, xs) \<in> step1 r)"
apply (unfold step1_def)
apply simp
apply (rule iffI)
apply (erule exE)
apply (rename_tac ts)
apply (case_tac ts)
apply fastsimp
apply force
apply (erule disjE)
apply blast
apply (blast intro: Cons_eq_appendI)
done
lemma append_step1I:
"(ys, xs) \<in> step1 r \<and> vs = us \<or> ys = xs \<and> (vs, us) \<in> step1 r
==> (ys @ vs, xs @ us) : step1 r"
apply (unfold step1_def)
apply auto
apply blast
apply (blast intro: append_eq_appendI)
done
lemma Cons_step1E [elim!]:
assumes "(ys, x # xs) \<in> step1 r"
and "!!y. ys = y # xs \<Longrightarrow> (y, x) \<in> r \<Longrightarrow> R"
and "!!zs. ys = x # zs \<Longrightarrow> (zs, xs) \<in> step1 r \<Longrightarrow> R"
shows R
using prems
apply (cases ys)
apply (simp add: step1_def)
apply blast
done
lemma Snoc_step1_SnocD:
"(ys @ [y], xs @ [x]) \<in> step1 r
==> ((ys, xs) \<in> step1 r \<and> y = x \<or> ys = xs \<and> (y, x) \<in> r)"
apply (unfold step1_def)
apply simp
apply (clarify del: disjCI)
apply (rename_tac vs)
apply (rule_tac xs = vs in rev_exhaust)
apply force
apply simp
apply blast
done
lemma Cons_acc_step1I [intro!]:
"x \<in> acc r ==> xs \<in> acc (step1 r) \<Longrightarrow> x # xs \<in> acc (step1 r)"
apply (induct fixing: xs set: acc)
apply (erule thin_rl)
apply (erule acc_induct)
apply (rule accI)
apply blast
done
lemma lists_accD: "xs \<in> lists (acc r) ==> xs \<in> acc (step1 r)"
apply (induct set: lists)
apply (rule accI)
apply simp
apply (rule accI)
apply (fast dest: acc_downward)
done
lemma ex_step1I:
"[| x \<in> set xs; (y, x) \<in> r |]
==> \<exists>ys. (ys, xs) \<in> step1 r \<and> y \<in> set ys"
apply (unfold step1_def)
apply (drule in_set_conv_decomp [THEN iffD1])
apply force
done
lemma lists_accI: "xs \<in> acc (step1 r) ==> xs \<in> lists (acc r)"
apply (induct set: acc)
apply clarify
apply (rule accI)
apply (drule ex_step1I, assumption)
apply blast
done
end