Some X-symbols for <notin>, <noteq>, <forall>, <exists>
Streamlining of Yahalom proofs
Removal of redundant proofs
(*  Title:      HOL/Wellfounded_Recursion.thy
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   1992  University of Cambridge
Well-founded Recursion
*)
Wellfounded_Recursion = Transitive_Closure +
constdefs
  wf         :: "('a * 'a)set => bool"
  "wf(r) == (!P. (!x. (!y. (y,x):r --> P(y)) --> P(x)) --> (!x. P(x)))"
  acyclic :: "('a*'a)set => bool"
  "acyclic r == !x. (x,x) ~: r^+"
  cut        :: "('a => 'b) => ('a * 'a)set => 'a => 'a => 'b"
  "cut f r x == (%y. if (y,x):r then f y else arbitrary)"
  is_recfun  :: "('a * 'a)set => (('a=>'b) => ('a=>'b)) =>'a=>('a=>'b) => bool"
  "is_recfun r H a f == (f = cut (%x. H (cut f r x) x) r a)"
  the_recfun :: "('a * 'a)set => (('a=>'b) => ('a=>'b)) => 'a => 'a => 'b"
  "the_recfun r H a  == (@f. is_recfun r H a f)"
  wfrec      :: "('a * 'a)set => (('a=>'b) => ('a=>'b)) => 'a => 'b"
  "wfrec r H == (%x. H (cut (the_recfun (trancl r) (%f v. H (cut f r v) v) x)
                            r x)  x)"
axclass
  wellorder < linorder
  wf "wf {(x,y::'a::ord). x<y}"
end