| author | wenzelm |
| Fri, 05 Apr 2024 17:47:09 +0200 | |
| changeset 80086 | 1b986e5f9764 |
| parent 69597 | ff784d5a5bfb |
| permissions | -rw-r--r-- |
(* Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1996 University of Cambridge Datatype of events; function "spies"; freshness "bad" agents have been broken by the Spy; their private keys and internal stores are visible to him *)(*<*) section\<open>Theory of Events for Security Protocols\<close> theory Event imports Message begin consts (*Initial states of agents -- parameter of the construction*) initState :: "agent \<Rightarrow> msg set" datatype event = Says agent agent msg | Gets agent msg | Notes agent msg consts bad :: "agent set" \<comment> \<open>compromised agents\<close> text\<open>The constant "spies" is retained for compatibility's sake\<close> primrec knows :: "agent \<Rightarrow> event list \<Rightarrow> msg set" where knows_Nil: "knows A [] = initState A" | knows_Cons: "knows A (ev # evs) = (if A = Spy then (case ev of Says A' B X \<Rightarrow> insert X (knows Spy evs) | Gets A' X \<Rightarrow> knows Spy evs | Notes A' X \<Rightarrow> if A' \<in> bad then insert X (knows Spy evs) else knows Spy evs) else (case ev of Says A' B X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs | Gets A' X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs | Notes A' X \<Rightarrow> if A'=A then insert X (knows A evs) else knows A evs))" abbreviation (input) spies :: "event list \<Rightarrow> msg set" where "spies == knows Spy" text\<open>Spy has access to his own key for spoof messages, but Server is secure\<close> specification (bad) Spy_in_bad [iff]: "Spy \<in> bad" Server_not_bad [iff]: "Server \<notin> bad" by (rule exI [of _ "{Spy}"], simp) (* Case A=Spy on the Gets event enforces the fact that if a message is received then it must have been sent, therefore the oops case must use Notes *) primrec (*Set of items that might be visible to somebody: complement of the set of fresh items*) used :: "event list \<Rightarrow> msg set" where used_Nil: "used [] = (UN B. parts (initState B))" | used_Cons: "used (ev # evs) = (case ev of Says A B X \<Rightarrow> parts {X} \<union> used evs | Gets A X \<Rightarrow> used evs | Notes A X \<Rightarrow> parts {X} \<union> used evs)" \<comment> \<open>The case for \<^term>\<open>Gets\<close> seems anomalous, but \<^term>\<open>Gets\<close> always follows \<^term>\<open>Says\<close> in real protocols. Seems difficult to change. See \<^text>\<open>Gets_correct\<close> in theory \<^text>\<open>Guard/Extensions.thy\<close>.\<close> lemma Notes_imp_used [rule_format]: "Notes A X \<in> set evs \<longrightarrow> X \<in> used evs" apply (induct_tac evs) apply (auto split: event.split) done lemma Says_imp_used [rule_format]: "Says A B X \<in> set evs \<longrightarrow> X \<in> used evs" apply (induct_tac evs) apply (auto split: event.split) done subsection\<open>Function \<^term>\<open>knows\<close>\<close> (*Simplifying parts(insert X (knows Spy evs)) = parts{X} \<union> parts(knows Spy evs). This version won't loop with the simplifier.*) lemmas parts_insert_knows_A = parts_insert [of _ "knows A evs"] for A evs lemma knows_Spy_Says [simp]: "knows Spy (Says A B X # evs) = insert X (knows Spy evs)" by simp text\<open>Letting the Spy see "bad" agents' notes avoids redundant case-splits on whether \<^term>\<open>A=Spy\<close> and whether \<^term>\<open>A\<in>bad\<close>\<close> lemma knows_Spy_Notes [simp]: "knows Spy (Notes A X # evs) = (if A\<in>bad then insert X (knows Spy evs) else knows Spy evs)" by simp lemma knows_Spy_Gets [simp]: "knows Spy (Gets A X # evs) = knows Spy evs" by simp lemma knows_Spy_subset_knows_Spy_Says: "knows Spy evs \<subseteq> knows Spy (Says A B X # evs)" by (simp add: subset_insertI) lemma knows_Spy_subset_knows_Spy_Notes: "knows Spy evs \<subseteq> knows Spy (Notes A X # evs)" by force lemma knows_Spy_subset_knows_Spy_Gets: "knows Spy evs \<subseteq> knows Spy (Gets A X # evs)" by (simp add: subset_insertI) text\<open>Spy sees what is sent on the traffic\<close> lemma Says_imp_knows_Spy [rule_format]: "Says A B X \<in> set evs \<longrightarrow> X \<in> knows Spy evs" apply (induct_tac "evs") apply (simp_all (no_asm_simp) split: event.split) done lemma Notes_imp_knows_Spy [rule_format]: "Notes A X \<in> set evs \<longrightarrow> A \<in> bad \<longrightarrow> X \<in> knows Spy evs" apply (induct_tac "evs") apply (simp_all (no_asm_simp) split: event.split) done text\<open>Elimination rules: derive contradictions from old Says events containing items known to be fresh\<close> lemmas knows_Spy_partsEs = Says_imp_knows_Spy [THEN parts.Inj, elim_format] parts.Body [elim_format] lemmas Says_imp_analz_Spy = Says_imp_knows_Spy [THEN analz.Inj] text\<open>Compatibility for the old "spies" function\<close> lemmas spies_partsEs = knows_Spy_partsEs lemmas Says_imp_spies = Says_imp_knows_Spy lemmas parts_insert_spies = parts_insert_knows_A [of _ Spy] subsection\<open>Knowledge of Agents\<close> lemma knows_Says: "knows A (Says A B X # evs) = insert X (knows A evs)" by simp lemma knows_Notes: "knows A (Notes A X # evs) = insert X (knows A evs)" by simp lemma knows_Gets: "A \<noteq> Spy \<longrightarrow> knows A (Gets A X # evs) = insert X (knows A evs)" by simp lemma knows_subset_knows_Says: "knows A evs \<subseteq> knows A (Says A' B X # evs)" by (simp add: subset_insertI) lemma knows_subset_knows_Notes: "knows A evs \<subseteq> knows A (Notes A' X # evs)" by (simp add: subset_insertI) lemma knows_subset_knows_Gets: "knows A evs \<subseteq> knows A (Gets A' X # evs)" by (simp add: subset_insertI) text\<open>Agents know what they say\<close> lemma Says_imp_knows [rule_format]: "Says A B X \<in> set evs \<longrightarrow> X \<in> knows A evs" apply (induct_tac "evs") apply (simp_all (no_asm_simp) split: event.split) apply blast done text\<open>Agents know what they note\<close> lemma Notes_imp_knows [rule_format]: "Notes A X \<in> set evs \<longrightarrow> X \<in> knows A evs" apply (induct_tac "evs") apply (simp_all (no_asm_simp) split: event.split) apply blast done text\<open>Agents know what they receive\<close> lemma Gets_imp_knows_agents [rule_format]: "A \<noteq> Spy \<longrightarrow> Gets A X \<in> set evs \<longrightarrow> X \<in> knows A evs" apply (induct_tac "evs") apply (simp_all (no_asm_simp) split: event.split) done text\<open>What agents DIFFERENT FROM Spy know was either said, or noted, or got, or known initially\<close> lemma knows_imp_Says_Gets_Notes_initState [rule_format]: "[| X \<in> knows A evs; A \<noteq> Spy |] ==> \<exists>B. Says A B X \<in> set evs \<or> Gets A X \<in> set evs \<or> Notes A X \<in> set evs \<or> X \<in> initState A" apply (erule rev_mp) apply (induct_tac "evs") apply (simp_all (no_asm_simp) split: event.split) apply blast done text\<open>What the Spy knows -- for the time being -- was either said or noted, or known initially\<close> lemma knows_Spy_imp_Says_Notes_initState [rule_format]: "[| X \<in> knows Spy evs |] ==> \<exists>A B. Says A B X \<in> set evs \<or> Notes A X \<in> set evs \<or> X \<in> initState Spy" apply (erule rev_mp) apply (induct_tac "evs") apply (simp_all (no_asm_simp) split: event.split) apply blast done lemma parts_knows_Spy_subset_used: "parts (knows Spy evs) \<subseteq> used evs" apply (induct_tac "evs", force) apply (simp add: parts_insert_knows_A knows_Cons add: event.split, blast) done lemmas usedI = parts_knows_Spy_subset_used [THEN subsetD, intro] lemma initState_into_used: "X \<in> parts (initState B) \<Longrightarrow> X \<in> used evs" apply (induct_tac "evs") apply (simp_all add: parts_insert_knows_A split: event.split, blast) done lemma used_Says [simp]: "used (Says A B X # evs) = parts{X} \<union> used evs" by simp lemma used_Notes [simp]: "used (Notes A X # evs) = parts{X} \<union> used evs" by simp lemma used_Gets [simp]: "used (Gets A X # evs) = used evs" by simp lemma used_nil_subset: "used [] \<subseteq> used evs" apply simp apply (blast intro: initState_into_used) done text\<open>NOTE REMOVAL--laws above are cleaner, as they don't involve "case"\<close> declare knows_Cons [simp del] used_Nil [simp del] used_Cons [simp del] text\<open>For proving theorems of the form \<^term>\<open>X \<notin> analz (knows Spy evs) \<longrightarrow> P\<close> New events added by induction to "evs" are discarded. Provided this information isn't needed, the proof will be much shorter, since it will omit complicated reasoning about \<^term>\<open>analz\<close>.\<close> lemmas analz_mono_contra = knows_Spy_subset_knows_Spy_Says [THEN analz_mono, THEN contra_subsetD] knows_Spy_subset_knows_Spy_Notes [THEN analz_mono, THEN contra_subsetD] knows_Spy_subset_knows_Spy_Gets [THEN analz_mono, THEN contra_subsetD] lemmas analz_impI = impI [where P = "Y \<notin> analz (knows Spy evs)"] for Y evs ML \<open> fun analz_mono_contra_tac ctxt = resolve_tac ctxt @{thms analz_impI} THEN' REPEAT1 o (dresolve_tac ctxt @{thms analz_mono_contra}) THEN' mp_tac ctxt \<close> lemma knows_subset_knows_Cons: "knows A evs \<subseteq> knows A (e # evs)" by (induct e, auto simp: knows_Cons) lemma initState_subset_knows: "initState A \<subseteq> knows A evs" apply (induct_tac evs, simp) apply (blast intro: knows_subset_knows_Cons [THEN subsetD]) done text\<open>For proving \<open>new_keys_not_used\<close>\<close> lemma keysFor_parts_insert: "[| K \<in> keysFor (parts (insert X G)); X \<in> synth (analz H) |] ==> K \<in> keysFor (parts (G \<union> H)) | Key (invKey K) \<in> parts H" by (force dest!: parts_insert_subset_Un [THEN keysFor_mono, THEN [2] rev_subsetD] analz_subset_parts [THEN keysFor_mono, THEN [2] rev_subsetD] intro: analz_subset_parts [THEN subsetD] parts_mono [THEN [2] rev_subsetD]) method_setup analz_mono_contra = \<open> Scan.succeed (fn ctxt => SIMPLE_METHOD (REPEAT_FIRST (analz_mono_contra_tac ctxt)))\<close> "for proving theorems of the form X \<notin> analz (knows Spy evs) \<longrightarrow> P" subsubsection\<open>Useful for case analysis on whether a hash is a spoof or not\<close> lemmas syan_impI = impI [where P = "Y \<notin> synth (analz (knows Spy evs))"] for Y evs ML \<open> val knows_Cons = @{thm knows_Cons}; val used_Nil = @{thm used_Nil}; val used_Cons = @{thm used_Cons}; val Notes_imp_used = @{thm Notes_imp_used}; val Says_imp_used = @{thm Says_imp_used}; val Says_imp_knows_Spy = @{thm Says_imp_knows_Spy}; val Notes_imp_knows_Spy = @{thm Notes_imp_knows_Spy}; val knows_Spy_partsEs = @{thms knows_Spy_partsEs}; val spies_partsEs = @{thms spies_partsEs}; val Says_imp_spies = @{thm Says_imp_spies}; val parts_insert_spies = @{thm parts_insert_spies}; val Says_imp_knows = @{thm Says_imp_knows}; val Notes_imp_knows = @{thm Notes_imp_knows}; val Gets_imp_knows_agents = @{thm Gets_imp_knows_agents}; val knows_imp_Says_Gets_Notes_initState = @{thm knows_imp_Says_Gets_Notes_initState}; val knows_Spy_imp_Says_Notes_initState = @{thm knows_Spy_imp_Says_Notes_initState}; val usedI = @{thm usedI}; val initState_into_used = @{thm initState_into_used}; val used_Says = @{thm used_Says}; val used_Notes = @{thm used_Notes}; val used_Gets = @{thm used_Gets}; val used_nil_subset = @{thm used_nil_subset}; val analz_mono_contra = @{thms analz_mono_contra}; val knows_subset_knows_Cons = @{thm knows_subset_knows_Cons}; val initState_subset_knows = @{thm initState_subset_knows}; val keysFor_parts_insert = @{thm keysFor_parts_insert}; val synth_analz_mono = @{thm synth_analz_mono}; val knows_Spy_subset_knows_Spy_Says = @{thm knows_Spy_subset_knows_Spy_Says}; val knows_Spy_subset_knows_Spy_Notes = @{thm knows_Spy_subset_knows_Spy_Notes}; val knows_Spy_subset_knows_Spy_Gets = @{thm knows_Spy_subset_knows_Spy_Gets}; fun synth_analz_mono_contra_tac ctxt = resolve_tac ctxt @{thms syan_impI} THEN' REPEAT1 o (dresolve_tac ctxt [@{thm knows_Spy_subset_knows_Spy_Says} RS @{thm synth_analz_mono} RS @{thm contra_subsetD}, @{thm knows_Spy_subset_knows_Spy_Notes} RS @{thm synth_analz_mono} RS @{thm contra_subsetD}, @{thm knows_Spy_subset_knows_Spy_Gets} RS @{thm synth_analz_mono} RS @{thm contra_subsetD}]) THEN' mp_tac ctxt \<close> method_setup synth_analz_mono_contra = \<open> Scan.succeed (fn ctxt => SIMPLE_METHOD (REPEAT_FIRST (synth_analz_mono_contra_tac ctxt)))\<close> "for proving theorems of the form X \<notin> synth (analz (knows Spy evs)) \<longrightarrow> P" (*>*) section\<open>Event Traces \label{sec:events}\<close> text \<open> The system's behaviour is formalized as a set of traces of \emph{events}. The most important event, \<open>Says A B X\<close>, expresses $A\to B : X$, which is the attempt by~$A$ to send~$B$ the message~$X$. A trace is simply a list, constructed in reverse using~\<open>#\<close>. Other event types include reception of messages (when we want to make it explicit) and an agent's storing a fact. Sometimes the protocol requires an agent to generate a new nonce. The probability that a 20-byte random number has appeared before is effectively zero. To formalize this important property, the set \<^term>\<open>used evs\<close> denotes the set of all items mentioned in the trace~\<open>evs\<close>. The function \<open>used\<close> has a straightforward recursive definition. Here is the case for \<open>Says\<close> event: @{thm [display,indent=5] used_Says [no_vars]} The function \<open>knows\<close> formalizes an agent's knowledge. Mostly we only care about the spy's knowledge, and \<^term>\<open>knows Spy evs\<close> is the set of items available to the spy in the trace~\<open>evs\<close>. Already in the empty trace, the spy starts with some secrets at his disposal, such as the private keys of compromised users. After each \<open>Says\<close> event, the spy learns the message that was sent: @{thm [display,indent=5] knows_Spy_Says [no_vars]} Combinations of functions express other important sets of messages derived from~\<open>evs\<close>: \begin{itemize} \item \<^term>\<open>analz (knows Spy evs)\<close> is everything that the spy could learn by decryption \item \<^term>\<open>synth (analz (knows Spy evs))\<close> is everything that the spy could generate \end{itemize} \<close> (*<*) end (*>*)