(* ID: $Id$
Author: Florian Haftmann, TU Muenchen
*)
header {* Test and Examples for Pure/Tools/class_package.ML *}
theory Classpackage
imports Main
begin
class semigroup =
fixes mult :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<^loc>\<otimes>" 70)
assumes assoc: "x \<^loc>\<otimes> y \<^loc>\<otimes> z = x \<^loc>\<otimes> (y \<^loc>\<otimes> z)"
instance nat :: semigroup
"m \<otimes> n \<equiv> m + n"
proof
fix m n q :: nat
from semigroup_nat_def show "m \<otimes> n \<otimes> q = m \<otimes> (n \<otimes> q)" by simp
qed
instance int :: semigroup
"k \<otimes> l \<equiv> k + l"
proof
fix k l j :: int
from semigroup_int_def show "k \<otimes> l \<otimes> j = k \<otimes> (l \<otimes> j)" by simp
qed
instance list :: (type) semigroup
"xs \<otimes> ys \<equiv> xs @ ys"
proof
fix xs ys zs :: "'a list"
show "xs \<otimes> ys \<otimes> zs = xs \<otimes> (ys \<otimes> zs)"
proof -
from semigroup_list_def have "\<And>xs ys\<Colon>'a list. xs \<otimes> ys \<equiv> xs @ ys" .
thus ?thesis by simp
qed
qed
class monoidl = semigroup +
fixes one :: 'a ("\<^loc>\<one>")
assumes neutl: "\<^loc>\<one> \<^loc>\<otimes> x = x"
instance monoidl_num_def: nat :: monoidl and int :: monoidl
"\<one> \<equiv> 0"
"\<one> \<equiv> 0"
proof
fix n :: nat
from monoidl_num_def show "\<one> \<otimes> n = n" by simp
next
fix k :: int
from monoidl_num_def show "\<one> \<otimes> k = k" by simp
qed
instance list :: (type) monoidl
"\<one> \<equiv> []"
proof
fix xs :: "'a list"
show "\<one> \<otimes> xs = xs"
proof -
from mult_list_def have "\<And>xs ys\<Colon>'a list. xs \<otimes> ys \<equiv> xs @ ys" .
moreover from monoidl_list_def have "\<one> \<equiv> []\<Colon>'a list" by simp
ultimately show ?thesis by simp
qed
qed
class monoid = monoidl +
assumes neutr: "x \<^loc>\<otimes> \<^loc>\<one> = x"
instance monoid_list_def: list :: (type) monoid
proof
fix xs :: "'a list"
show "xs \<otimes> \<one> = xs"
proof -
from mult_list_def have "\<And>xs ys\<Colon>'a list. xs \<otimes> ys \<equiv> xs @ ys" .
moreover from monoid_list_def have "\<one> \<equiv> []\<Colon>'a list" by simp
ultimately show ?thesis by simp
qed
qed
class monoid_comm = monoid +
assumes comm: "x \<^loc>\<otimes> y = y \<^loc>\<otimes> x"
instance monoid_comm_num_def: nat :: monoid_comm and int :: monoid_comm
proof
fix n :: nat
from monoid_comm_num_def show "n \<otimes> \<one> = n" by simp
next
fix n m :: nat
from monoid_comm_num_def show "n \<otimes> m = m \<otimes> n" by simp
next
fix k :: int
from monoid_comm_num_def show "k \<otimes> \<one> = k" by simp
next
fix k l :: int
from monoid_comm_num_def show "k \<otimes> l = l \<otimes> k" by simp
qed
definition (in monoid)
units :: "'a set"
units_def: "units = { y. \<exists>x. x \<^loc>\<otimes> y = \<^loc>\<one> \<and> y \<^loc>\<otimes> x = \<^loc>\<one> }"
lemma (in monoid) inv_obtain:
assumes ass: "x \<in> units"
obtains y where "y \<^loc>\<otimes> x = \<^loc>\<one>" and "x \<^loc>\<otimes> y = \<^loc>\<one>"
proof -
from ass units_def obtain y
where "y \<^loc>\<otimes> x = \<^loc>\<one>" and "x \<^loc>\<otimes> y = \<^loc>\<one>" by auto
thus ?thesis ..
qed
lemma (in monoid) inv_unique:
assumes eq: "y \<^loc>\<otimes> x = \<^loc>\<one>" "x \<^loc>\<otimes> y' = \<^loc>\<one>"
shows "y = y'"
proof -
from eq neutr have "y = y \<^loc>\<otimes> (x \<^loc>\<otimes> y')" by simp
also with assoc have "... = (y \<^loc>\<otimes> x) \<^loc>\<otimes> y'" by simp
also with eq neutl have "... = y'" by simp
finally show ?thesis .
qed
lemma (in monoid) units_inv_comm:
assumes inv: "x \<^loc>\<otimes> y = \<^loc>\<one>"
and G: "x \<in> units"
shows "y \<^loc>\<otimes> x = \<^loc>\<one>"
proof -
from G inv_obtain obtain z
where z_choice: "z \<^loc>\<otimes> x = \<^loc>\<one>" by blast
from inv neutl neutr have "x \<^loc>\<otimes> y \<^loc>\<otimes> x = x \<^loc>\<otimes> \<^loc>\<one>" by simp
with assoc have "z \<^loc>\<otimes> x \<^loc>\<otimes> y \<^loc>\<otimes> x = z \<^loc>\<otimes> x \<^loc>\<otimes> \<^loc>\<one>" by simp
with neutl z_choice show ?thesis by simp
qed
consts
reduce :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"
primrec
"reduce f g 0 x = g"
"reduce f g (Suc n) x = f x (reduce f g n x)"
definition (in monoid)
npow :: "nat \<Rightarrow> 'a \<Rightarrow> 'a"
npow_def_prim: "npow n x = reduce (op \<^loc>\<otimes>) \<^loc>\<one> n x"
abbreviation (in monoid)
abbrev_npow :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infix "\<^loc>\<up>" 75)
"x \<^loc>\<up> n \<equiv> npow n x"
lemma (in monoid) npow_def:
"x \<^loc>\<up> 0 = \<^loc>\<one>"
"x \<^loc>\<up> Suc n = x \<^loc>\<otimes> x \<^loc>\<up> n"
using npow_def_prim by simp_all
lemma (in monoid) nat_pow_one:
"\<^loc>\<one> \<^loc>\<up> n = \<^loc>\<one>"
using npow_def neutl by (induct n) simp_all
lemma (in monoid) nat_pow_mult:
"npow n x \<^loc>\<otimes> npow m x = npow (n + m) x"
proof (induct n)
case 0 with neutl npow_def show ?case by simp
next
case (Suc n) with Suc.hyps assoc npow_def show ?case by simp
qed
lemma (in monoid) nat_pow_pow:
"npow n (npow m x) = npow (n * m) x"
using npow_def nat_pow_mult by (induct n) simp_all
class group = monoidl +
fixes inv :: "'a \<Rightarrow> 'a" ("\<^loc>\<div> _" [81] 80)
assumes invl: "\<^loc>\<div> x \<^loc>\<otimes> x = \<^loc>\<one>"
class group_comm = group + monoid_comm
instance group_comm_int_def: int :: group_comm
"\<div> k \<equiv> - (k\<Colon>int)"
proof
fix k :: int
from group_comm_int_def show "\<div> k \<otimes> k = \<one>" by simp
qed
lemma (in group) cancel:
"(x \<^loc>\<otimes> y = x \<^loc>\<otimes> z) = (y = z)"
proof
fix x y z :: 'a
assume eq: "x \<^loc>\<otimes> y = x \<^loc>\<otimes> z"
hence "\<^loc>\<div> x \<^loc>\<otimes> (x \<^loc>\<otimes> y) = \<^loc>\<div> x \<^loc>\<otimes> (x \<^loc>\<otimes> z)" by simp
with assoc have "\<^loc>\<div> x \<^loc>\<otimes> x \<^loc>\<otimes> y = \<^loc>\<div> x \<^loc>\<otimes> x \<^loc>\<otimes> z" by simp
with neutl invl show "y = z" by simp
next
fix x y z :: 'a
assume eq: "y = z"
thus "x \<^loc>\<otimes> y = x \<^loc>\<otimes> z" by simp
qed
lemma (in group) neutr:
"x \<^loc>\<otimes> \<^loc>\<one> = x"
proof -
from invl have "\<^loc>\<div> x \<^loc>\<otimes> x = \<^loc>\<one>" by simp
with assoc [symmetric] neutl invl have "\<^loc>\<div> x \<^loc>\<otimes> (x \<^loc>\<otimes> \<^loc>\<one>) = \<^loc>\<div> x \<^loc>\<otimes> x" by simp
with cancel show ?thesis by simp
qed
lemma (in group) invr:
"x \<^loc>\<otimes> \<^loc>\<div> x = \<^loc>\<one>"
proof -
from neutl invl have "\<^loc>\<div> x \<^loc>\<otimes> x \<^loc>\<otimes> \<^loc>\<div> x = \<^loc>\<div> x" by simp
with neutr have "\<^loc>\<div> x \<^loc>\<otimes> x \<^loc>\<otimes> \<^loc>\<div> x = \<^loc>\<div> x \<^loc>\<otimes> \<^loc>\<one> " by simp
with assoc have "\<^loc>\<div> x \<^loc>\<otimes> (x \<^loc>\<otimes> \<^loc>\<div> x) = \<^loc>\<div> x \<^loc>\<otimes> \<^loc>\<one> " by simp
with cancel show ?thesis ..
qed
instance group < monoid
proof -
fix x
from neutr show "x \<^loc>\<otimes> \<^loc>\<one> = x" .
qed
lemma (in group) all_inv [intro]:
"(x\<Colon>'a) \<in> monoid.units (op \<^loc>\<otimes>) \<^loc>\<one>"
unfolding units_def
proof -
fix x :: "'a"
from invl invr have "\<^loc>\<div> x \<^loc>\<otimes> x = \<^loc>\<one>" and "x \<^loc>\<otimes> \<^loc>\<div> x = \<^loc>\<one>" .
then obtain y where "y \<^loc>\<otimes> x = \<^loc>\<one>" and "x \<^loc>\<otimes> y = \<^loc>\<one>" ..
hence "\<exists>y\<Colon>'a. y \<^loc>\<otimes> x = \<^loc>\<one> \<and> x \<^loc>\<otimes> y = \<^loc>\<one>" by blast
thus "x \<in> {y\<Colon>'a. \<exists>x\<Colon>'a. x \<^loc>\<otimes> y = \<^loc>\<one> \<and> y \<^loc>\<otimes> x = \<^loc>\<one>}" by simp
qed
lemma (in group) cancer:
"(y \<^loc>\<otimes> x = z \<^loc>\<otimes> x) = (y = z)"
proof
assume eq: "y \<^loc>\<otimes> x = z \<^loc>\<otimes> x"
with assoc [symmetric] have "y \<^loc>\<otimes> (x \<^loc>\<otimes> \<^loc>\<div> x) = z \<^loc>\<otimes> (x \<^loc>\<otimes> \<^loc>\<div> x)" by (simp del: invr)
with invr neutr show "y = z" by simp
next
assume eq: "y = z"
thus "y \<^loc>\<otimes> x = z \<^loc>\<otimes> x" by simp
qed
lemma (in group) inv_one:
"\<^loc>\<div> \<^loc>\<one> = \<^loc>\<one>"
proof -
from neutl have "\<^loc>\<div> \<^loc>\<one> = \<^loc>\<one> \<^loc>\<otimes> (\<^loc>\<div> \<^loc>\<one>)" ..
moreover from invr have "... = \<^loc>\<one>" by simp
finally show ?thesis .
qed
lemma (in group) inv_inv:
"\<^loc>\<div> (\<^loc>\<div> x) = x"
proof -
from invl invr neutr
have "\<^loc>\<div> (\<^loc>\<div> x) \<^loc>\<otimes> \<^loc>\<div> x \<^loc>\<otimes> x = x \<^loc>\<otimes> \<^loc>\<div> x \<^loc>\<otimes> x" by simp
with assoc [symmetric]
have "\<^loc>\<div> (\<^loc>\<div> x) \<^loc>\<otimes> (\<^loc>\<div> x \<^loc>\<otimes> x) = x \<^loc>\<otimes> (\<^loc>\<div> x \<^loc>\<otimes> x)" by simp
with invl neutr show ?thesis by simp
qed
lemma (in group) inv_mult_group:
"\<^loc>\<div> (x \<^loc>\<otimes> y) = \<^loc>\<div> y \<^loc>\<otimes> \<^loc>\<div> x"
proof -
from invl have "\<^loc>\<div> (x \<^loc>\<otimes> y) \<^loc>\<otimes> (x \<^loc>\<otimes> y) = \<^loc>\<one>" by simp
with assoc have "\<^loc>\<div> (x \<^loc>\<otimes> y) \<^loc>\<otimes> x \<^loc>\<otimes> y = \<^loc>\<one>" by simp
with neutl have "\<^loc>\<div> (x \<^loc>\<otimes> y) \<^loc>\<otimes> x \<^loc>\<otimes> y \<^loc>\<otimes> \<^loc>\<div> y \<^loc>\<otimes> \<^loc>\<div> x = \<^loc>\<div> y \<^loc>\<otimes> \<^loc>\<div> x" by simp
with assoc have "\<^loc>\<div> (x \<^loc>\<otimes> y) \<^loc>\<otimes> (x \<^loc>\<otimes> (y \<^loc>\<otimes> \<^loc>\<div> y) \<^loc>\<otimes> \<^loc>\<div> x) = \<^loc>\<div> y \<^loc>\<otimes> \<^loc>\<div> x" by simp
with invr neutr show ?thesis by simp
qed
lemma (in group) inv_comm:
"x \<^loc>\<otimes> \<^loc>\<div> x = \<^loc>\<div> x \<^loc>\<otimes> x"
using invr invl by simp
definition (in group)
pow :: "int \<Rightarrow> 'a \<Rightarrow> 'a"
pow_def: "pow k x = (if k < 0 then \<^loc>\<div> (monoid.npow (op \<^loc>\<otimes>) \<^loc>\<one> (nat (-k)) x)
else (monoid.npow (op \<^loc>\<otimes>) \<^loc>\<one> (nat k) x))"
abbreviation (in group)
abbrev_pow :: "'a \<Rightarrow> int \<Rightarrow> 'a" (infix "\<^loc>\<up>" 75)
"x \<^loc>\<up> k \<equiv> pow k x"
lemma (in group) int_pow_zero:
"x \<^loc>\<up> (0\<Colon>int) = \<^loc>\<one>"
using npow_def pow_def by simp
lemma (in group) int_pow_one:
"\<^loc>\<one> \<^loc>\<up> (k\<Colon>int) = \<^loc>\<one>"
using pow_def nat_pow_one inv_one by simp
instance semigroup_prod_def: * :: (semigroup, semigroup) semigroup
mult_prod_def: "x \<otimes> y \<equiv> let (x1, x2) = x; (y1, y2) = y in
(x1 \<otimes> y1, x2 \<otimes> y2)"
by default (simp_all add: split_paired_all semigroup_prod_def assoc)
instance monoidl_prod_def: * :: (monoidl, monoidl) monoidl
one_prod_def: "\<one> \<equiv> (\<one>, \<one>)"
by default (simp_all add: split_paired_all monoidl_prod_def neutl)
instance monoid_prod_def: * :: (monoid, monoid) monoid
by default (simp_all add: split_paired_all monoid_prod_def neutr)
instance monoid_comm_prod_def: * :: (monoid_comm, monoid_comm) monoid_comm
by default (simp_all add: split_paired_all monoidl_prod_def comm)
instance group_prod_def: * :: (group, group) group
inv_prod_def: "\<div> x \<equiv> let (x1, x2) = x in (\<div> x1, \<div> x2)"
by default (simp_all add: split_paired_all group_prod_def invl)
instance group_comm_prod_def: * :: (group_comm, group_comm) group_comm
by default (simp_all add: split_paired_all group_prod_def comm)
definition
"X a b c = (a \<otimes> \<one> \<otimes> b, a \<otimes> \<one> \<otimes> b, [a, b] \<otimes> \<one> \<otimes> [a, b, c])"
"Y a b c = (a, \<div> a) \<otimes> \<one> \<otimes> \<div> (b, \<div> c)"
definition
"x1 = X (1::nat) 2 3"
"x2 = X (1::int) 2 3"
"y2 = Y (1::int) 2 3"
code_gen "op \<otimes>" \<one> inv
code_gen X Y (SML) (Haskell)
code_gen x1 x2 y2 (SML) (Haskell)
code_gen (SML -)
end