(* Title: HOLCF/Bifinite.thy
Author: Brian Huffman
*)
header {* Bifinite domains *}
theory Bifinite
imports Algebraic Cprod Sprod Ssum Up Lift One Tr Countable
begin
subsection {* Class of bifinite domains *}
text {*
We define a bifinite domain as a pcpo that is isomorphic to some
algebraic deflation over the universal domain.
*}
class bifinite = pcpo +
fixes emb :: "'a::pcpo \<rightarrow> udom"
fixes prj :: "udom \<rightarrow> 'a::pcpo"
fixes defl :: "'a itself \<Rightarrow> defl"
assumes ep_pair_emb_prj: "ep_pair emb prj"
assumes cast_DEFL: "cast\<cdot>(defl TYPE('a)) = emb oo prj"
syntax "_DEFL" :: "type \<Rightarrow> defl" ("(1DEFL/(1'(_')))")
translations "DEFL('t)" \<rightleftharpoons> "CONST defl TYPE('t)"
interpretation bifinite:
pcpo_ep_pair "emb :: 'a::bifinite \<rightarrow> udom" "prj :: udom \<rightarrow> 'a::bifinite"
unfolding pcpo_ep_pair_def
by (rule ep_pair_emb_prj)
lemmas emb_inverse = bifinite.e_inverse
lemmas emb_prj_below = bifinite.e_p_below
lemmas emb_eq_iff = bifinite.e_eq_iff
lemmas emb_strict = bifinite.e_strict
lemmas prj_strict = bifinite.p_strict
subsection {* Bifinite domains have a countable compact basis *}
text {*
Eventually it should be possible to generalize this to an unpointed
variant of the bifinite class.
*}
interpretation compact_basis:
ideal_completion below Rep_compact_basis "approximants::'a::bifinite \<Rightarrow> _"
proof -
obtain Y where Y: "\<forall>i. Y i \<sqsubseteq> Y (Suc i)"
and DEFL: "DEFL('a) = (\<Squnion>i. defl_principal (Y i))"
by (rule defl.obtain_principal_chain)
def approx \<equiv> "\<lambda>i. (prj oo cast\<cdot>(defl_principal (Y i)) oo emb) :: 'a \<rightarrow> 'a"
interpret defl_approx: approx_chain approx
proof (rule approx_chain.intro)
show "chain (\<lambda>i. approx i)"
unfolding approx_def by (simp add: Y)
show "(\<Squnion>i. approx i) = ID"
unfolding approx_def
by (simp add: lub_distribs Y DEFL [symmetric] cast_DEFL cfun_eq_iff)
show "\<And>i. finite_deflation (approx i)"
unfolding approx_def
apply (rule bifinite.finite_deflation_p_d_e)
apply (rule finite_deflation_cast)
apply (rule defl.compact_principal)
apply (rule below_trans [OF monofun_cfun_fun])
apply (rule is_ub_thelub, simp add: Y)
apply (simp add: lub_distribs Y DEFL [symmetric] cast_DEFL)
done
qed
(* FIXME: why does show ?thesis fail here? *)
show "ideal_completion below Rep_compact_basis (approximants::'a \<Rightarrow> _)" ..
qed
subsection {* Type combinators *}
definition
defl_fun1 ::
"(nat \<Rightarrow> 'a \<rightarrow> 'a) \<Rightarrow> ((udom \<rightarrow> udom) \<rightarrow> ('a \<rightarrow> 'a)) \<Rightarrow> (defl \<rightarrow> defl)"
where
"defl_fun1 approx f =
defl.basis_fun (\<lambda>a.
defl_principal (Abs_fin_defl
(udom_emb approx oo f\<cdot>(Rep_fin_defl a) oo udom_prj approx)))"
definition
defl_fun2 ::
"(nat \<Rightarrow> 'a \<rightarrow> 'a) \<Rightarrow> ((udom \<rightarrow> udom) \<rightarrow> (udom \<rightarrow> udom) \<rightarrow> ('a \<rightarrow> 'a))
\<Rightarrow> (defl \<rightarrow> defl \<rightarrow> defl)"
where
"defl_fun2 approx f =
defl.basis_fun (\<lambda>a.
defl.basis_fun (\<lambda>b.
defl_principal (Abs_fin_defl
(udom_emb approx oo
f\<cdot>(Rep_fin_defl a)\<cdot>(Rep_fin_defl b) oo udom_prj approx))))"
lemma cast_defl_fun1:
assumes approx: "approx_chain approx"
assumes f: "\<And>a. finite_deflation a \<Longrightarrow> finite_deflation (f\<cdot>a)"
shows "cast\<cdot>(defl_fun1 approx f\<cdot>A) = udom_emb approx oo f\<cdot>(cast\<cdot>A) oo udom_prj approx"
proof -
have 1: "\<And>a. finite_deflation
(udom_emb approx oo f\<cdot>(Rep_fin_defl a) oo udom_prj approx)"
apply (rule ep_pair.finite_deflation_e_d_p)
apply (rule approx_chain.ep_pair_udom [OF approx])
apply (rule f, rule finite_deflation_Rep_fin_defl)
done
show ?thesis
by (induct A rule: defl.principal_induct, simp)
(simp only: defl_fun1_def
defl.basis_fun_principal
defl.basis_fun_mono
defl.principal_mono
Abs_fin_defl_mono [OF 1 1]
monofun_cfun below_refl
Rep_fin_defl_mono
cast_defl_principal
Abs_fin_defl_inverse [unfolded mem_Collect_eq, OF 1])
qed
lemma cast_defl_fun2:
assumes approx: "approx_chain approx"
assumes f: "\<And>a b. finite_deflation a \<Longrightarrow> finite_deflation b \<Longrightarrow>
finite_deflation (f\<cdot>a\<cdot>b)"
shows "cast\<cdot>(defl_fun2 approx f\<cdot>A\<cdot>B) =
udom_emb approx oo f\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj approx"
proof -
have 1: "\<And>a b. finite_deflation (udom_emb approx oo
f\<cdot>(Rep_fin_defl a)\<cdot>(Rep_fin_defl b) oo udom_prj approx)"
apply (rule ep_pair.finite_deflation_e_d_p)
apply (rule ep_pair_udom [OF approx])
apply (rule f, (rule finite_deflation_Rep_fin_defl)+)
done
show ?thesis
by (induct A B rule: defl.principal_induct2, simp, simp)
(simp only: defl_fun2_def
defl.basis_fun_principal
defl.basis_fun_mono
defl.principal_mono
Abs_fin_defl_mono [OF 1 1]
monofun_cfun below_refl
Rep_fin_defl_mono
cast_defl_principal
Abs_fin_defl_inverse [unfolded mem_Collect_eq, OF 1])
qed
subsection {* The universal domain is bifinite *}
instantiation udom :: bifinite
begin
definition [simp]:
"emb = (ID :: udom \<rightarrow> udom)"
definition [simp]:
"prj = (ID :: udom \<rightarrow> udom)"
definition
"defl (t::udom itself) = (\<Squnion>i. defl_principal (Abs_fin_defl (udom_approx i)))"
instance proof
show "ep_pair emb (prj :: udom \<rightarrow> udom)"
by (simp add: ep_pair.intro)
next
show "cast\<cdot>DEFL(udom) = emb oo (prj :: udom \<rightarrow> udom)"
unfolding defl_udom_def
apply (subst contlub_cfun_arg)
apply (rule chainI)
apply (rule defl.principal_mono)
apply (simp add: below_fin_defl_def)
apply (simp add: Abs_fin_defl_inverse finite_deflation_udom_approx)
apply (rule chainE)
apply (rule chain_udom_approx)
apply (subst cast_defl_principal)
apply (simp add: Abs_fin_defl_inverse finite_deflation_udom_approx)
done
qed
end
subsection {* Continuous function space is a bifinite domain *}
definition
cfun_approx :: "nat \<Rightarrow> (udom \<rightarrow> udom) \<rightarrow> (udom \<rightarrow> udom)"
where
"cfun_approx = (\<lambda>i. cfun_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
lemma cfun_approx: "approx_chain cfun_approx"
proof (rule approx_chain.intro)
show "chain (\<lambda>i. cfun_approx i)"
unfolding cfun_approx_def by simp
show "(\<Squnion>i. cfun_approx i) = ID"
unfolding cfun_approx_def
by (simp add: lub_distribs cfun_map_ID)
show "\<And>i. finite_deflation (cfun_approx i)"
unfolding cfun_approx_def
by (intro finite_deflation_cfun_map finite_deflation_udom_approx)
qed
definition cfun_defl :: "defl \<rightarrow> defl \<rightarrow> defl"
where "cfun_defl = defl_fun2 cfun_approx cfun_map"
lemma cast_cfun_defl:
"cast\<cdot>(cfun_defl\<cdot>A\<cdot>B) =
udom_emb cfun_approx oo cfun_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj cfun_approx"
unfolding cfun_defl_def
apply (rule cast_defl_fun2 [OF cfun_approx])
apply (erule (1) finite_deflation_cfun_map)
done
instantiation cfun :: (bifinite, bifinite) bifinite
begin
definition
"emb = udom_emb cfun_approx oo cfun_map\<cdot>prj\<cdot>emb"
definition
"prj = cfun_map\<cdot>emb\<cdot>prj oo udom_prj cfun_approx"
definition
"defl (t::('a \<rightarrow> 'b) itself) = cfun_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
instance proof
show "ep_pair emb (prj :: udom \<rightarrow> 'a \<rightarrow> 'b)"
unfolding emb_cfun_def prj_cfun_def
using ep_pair_udom [OF cfun_approx]
by (intro ep_pair_comp ep_pair_cfun_map ep_pair_emb_prj)
next
show "cast\<cdot>DEFL('a \<rightarrow> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<rightarrow> 'b)"
unfolding emb_cfun_def prj_cfun_def defl_cfun_def cast_cfun_defl
by (simp add: cast_DEFL oo_def cfun_eq_iff cfun_map_map)
qed
end
lemma DEFL_cfun:
"DEFL('a::bifinite \<rightarrow> 'b::bifinite) = cfun_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
by (rule defl_cfun_def)
subsection {* Cartesian product is a bifinite domain *}
definition
prod_approx :: "nat \<Rightarrow> udom \<times> udom \<rightarrow> udom \<times> udom"
where
"prod_approx = (\<lambda>i. cprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
lemma prod_approx: "approx_chain prod_approx"
proof (rule approx_chain.intro)
show "chain (\<lambda>i. prod_approx i)"
unfolding prod_approx_def by simp
show "(\<Squnion>i. prod_approx i) = ID"
unfolding prod_approx_def
by (simp add: lub_distribs cprod_map_ID)
show "\<And>i. finite_deflation (prod_approx i)"
unfolding prod_approx_def
by (intro finite_deflation_cprod_map finite_deflation_udom_approx)
qed
definition prod_defl :: "defl \<rightarrow> defl \<rightarrow> defl"
where "prod_defl = defl_fun2 prod_approx cprod_map"
lemma cast_prod_defl:
"cast\<cdot>(prod_defl\<cdot>A\<cdot>B) = udom_emb prod_approx oo
cprod_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj prod_approx"
unfolding prod_defl_def
apply (rule cast_defl_fun2 [OF prod_approx])
apply (erule (1) finite_deflation_cprod_map)
done
instantiation prod :: (bifinite, bifinite) bifinite
begin
definition
"emb = udom_emb prod_approx oo cprod_map\<cdot>emb\<cdot>emb"
definition
"prj = cprod_map\<cdot>prj\<cdot>prj oo udom_prj prod_approx"
definition
"defl (t::('a \<times> 'b) itself) = prod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
instance proof
show "ep_pair emb (prj :: udom \<rightarrow> 'a \<times> 'b)"
unfolding emb_prod_def prj_prod_def
using ep_pair_udom [OF prod_approx]
by (intro ep_pair_comp ep_pair_cprod_map ep_pair_emb_prj)
next
show "cast\<cdot>DEFL('a \<times> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<times> 'b)"
unfolding emb_prod_def prj_prod_def defl_prod_def cast_prod_defl
by (simp add: cast_DEFL oo_def cfun_eq_iff cprod_map_map)
qed
end
lemma DEFL_prod:
"DEFL('a::bifinite \<times> 'b::bifinite) = prod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
by (rule defl_prod_def)
subsection {* Strict product is a bifinite domain *}
definition
sprod_approx :: "nat \<Rightarrow> udom \<otimes> udom \<rightarrow> udom \<otimes> udom"
where
"sprod_approx = (\<lambda>i. sprod_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
lemma sprod_approx: "approx_chain sprod_approx"
proof (rule approx_chain.intro)
show "chain (\<lambda>i. sprod_approx i)"
unfolding sprod_approx_def by simp
show "(\<Squnion>i. sprod_approx i) = ID"
unfolding sprod_approx_def
by (simp add: lub_distribs sprod_map_ID)
show "\<And>i. finite_deflation (sprod_approx i)"
unfolding sprod_approx_def
by (intro finite_deflation_sprod_map finite_deflation_udom_approx)
qed
definition sprod_defl :: "defl \<rightarrow> defl \<rightarrow> defl"
where "sprod_defl = defl_fun2 sprod_approx sprod_map"
lemma cast_sprod_defl:
"cast\<cdot>(sprod_defl\<cdot>A\<cdot>B) =
udom_emb sprod_approx oo
sprod_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo
udom_prj sprod_approx"
unfolding sprod_defl_def
apply (rule cast_defl_fun2 [OF sprod_approx])
apply (erule (1) finite_deflation_sprod_map)
done
instantiation sprod :: (bifinite, bifinite) bifinite
begin
definition
"emb = udom_emb sprod_approx oo sprod_map\<cdot>emb\<cdot>emb"
definition
"prj = sprod_map\<cdot>prj\<cdot>prj oo udom_prj sprod_approx"
definition
"defl (t::('a \<otimes> 'b) itself) = sprod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
instance proof
show "ep_pair emb (prj :: udom \<rightarrow> 'a \<otimes> 'b)"
unfolding emb_sprod_def prj_sprod_def
using ep_pair_udom [OF sprod_approx]
by (intro ep_pair_comp ep_pair_sprod_map ep_pair_emb_prj)
next
show "cast\<cdot>DEFL('a \<otimes> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<otimes> 'b)"
unfolding emb_sprod_def prj_sprod_def defl_sprod_def cast_sprod_defl
by (simp add: cast_DEFL oo_def cfun_eq_iff sprod_map_map)
qed
end
lemma DEFL_sprod:
"DEFL('a::bifinite \<otimes> 'b::bifinite) = sprod_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
by (rule defl_sprod_def)
subsection {* Lifted cpo is a bifinite domain *}
definition u_approx :: "nat \<Rightarrow> udom\<^sub>\<bottom> \<rightarrow> udom\<^sub>\<bottom>"
where "u_approx = (\<lambda>i. u_map\<cdot>(udom_approx i))"
lemma u_approx: "approx_chain u_approx"
proof (rule approx_chain.intro)
show "chain (\<lambda>i. u_approx i)"
unfolding u_approx_def by simp
show "(\<Squnion>i. u_approx i) = ID"
unfolding u_approx_def
by (simp add: lub_distribs u_map_ID)
show "\<And>i. finite_deflation (u_approx i)"
unfolding u_approx_def
by (intro finite_deflation_u_map finite_deflation_udom_approx)
qed
definition u_defl :: "defl \<rightarrow> defl"
where "u_defl = defl_fun1 u_approx u_map"
lemma cast_u_defl:
"cast\<cdot>(u_defl\<cdot>A) =
udom_emb u_approx oo u_map\<cdot>(cast\<cdot>A) oo udom_prj u_approx"
unfolding u_defl_def
apply (rule cast_defl_fun1 [OF u_approx])
apply (erule finite_deflation_u_map)
done
instantiation u :: (bifinite) bifinite
begin
definition
"emb = udom_emb u_approx oo u_map\<cdot>emb"
definition
"prj = u_map\<cdot>prj oo udom_prj u_approx"
definition
"defl (t::'a u itself) = u_defl\<cdot>DEFL('a)"
instance proof
show "ep_pair emb (prj :: udom \<rightarrow> 'a u)"
unfolding emb_u_def prj_u_def
using ep_pair_udom [OF u_approx]
by (intro ep_pair_comp ep_pair_u_map ep_pair_emb_prj)
next
show "cast\<cdot>DEFL('a u) = emb oo (prj :: udom \<rightarrow> 'a u)"
unfolding emb_u_def prj_u_def defl_u_def cast_u_defl
by (simp add: cast_DEFL oo_def cfun_eq_iff u_map_map)
qed
end
lemma DEFL_u: "DEFL('a::bifinite u) = u_defl\<cdot>DEFL('a)"
by (rule defl_u_def)
subsection {* Lifted countable types are bifinite domains *}
definition
lift_approx :: "nat \<Rightarrow> 'a::countable lift \<rightarrow> 'a lift"
where
"lift_approx = (\<lambda>i. FLIFT x. if to_nat x < i then Def x else \<bottom>)"
lemma chain_lift_approx [simp]: "chain lift_approx"
unfolding lift_approx_def
by (rule chainI, simp add: FLIFT_mono)
lemma lub_lift_approx [simp]: "(\<Squnion>i. lift_approx i) = ID"
apply (rule cfun_eqI)
apply (simp add: contlub_cfun_fun)
apply (simp add: lift_approx_def)
apply (case_tac x, simp)
apply (rule thelubI)
apply (rule is_lubI)
apply (rule ub_rangeI, simp)
apply (drule ub_rangeD)
apply (erule rev_below_trans)
apply simp
apply (rule lessI)
done
lemma finite_deflation_lift_approx: "finite_deflation (lift_approx i)"
proof
fix x :: "'a lift"
show "lift_approx i\<cdot>x \<sqsubseteq> x"
unfolding lift_approx_def
by (cases x, simp, simp)
show "lift_approx i\<cdot>(lift_approx i\<cdot>x) = lift_approx i\<cdot>x"
unfolding lift_approx_def
by (cases x, simp, simp)
show "finite {x::'a lift. lift_approx i\<cdot>x = x}"
proof (rule finite_subset)
let ?S = "insert (\<bottom>::'a lift) (Def ` to_nat -` {..<i})"
show "{x::'a lift. lift_approx i\<cdot>x = x} \<subseteq> ?S"
unfolding lift_approx_def
by (rule subsetI, case_tac x, simp, simp split: split_if_asm)
show "finite ?S"
by (simp add: finite_vimageI)
qed
qed
lemma lift_approx: "approx_chain lift_approx"
using chain_lift_approx lub_lift_approx finite_deflation_lift_approx
by (rule approx_chain.intro)
instantiation lift :: (countable) bifinite
begin
definition
"emb = udom_emb lift_approx"
definition
"prj = udom_prj lift_approx"
definition
"defl (t::'a lift itself) =
(\<Squnion>i. defl_principal (Abs_fin_defl (emb oo lift_approx i oo prj)))"
instance proof
show ep: "ep_pair emb (prj :: udom \<rightarrow> 'a lift)"
unfolding emb_lift_def prj_lift_def
by (rule ep_pair_udom [OF lift_approx])
show "cast\<cdot>DEFL('a lift) = emb oo (prj :: udom \<rightarrow> 'a lift)"
unfolding defl_lift_def
apply (subst contlub_cfun_arg)
apply (rule chainI)
apply (rule defl.principal_mono)
apply (simp add: below_fin_defl_def)
apply (simp add: Abs_fin_defl_inverse finite_deflation_lift_approx
ep_pair.finite_deflation_e_d_p [OF ep])
apply (intro monofun_cfun below_refl)
apply (rule chainE)
apply (rule chain_lift_approx)
apply (subst cast_defl_principal)
apply (simp add: Abs_fin_defl_inverse finite_deflation_lift_approx
ep_pair.finite_deflation_e_d_p [OF ep] lub_distribs)
done
qed
end
subsection {* Strict sum is a bifinite domain *}
definition
ssum_approx :: "nat \<Rightarrow> udom \<oplus> udom \<rightarrow> udom \<oplus> udom"
where
"ssum_approx = (\<lambda>i. ssum_map\<cdot>(udom_approx i)\<cdot>(udom_approx i))"
lemma ssum_approx: "approx_chain ssum_approx"
proof (rule approx_chain.intro)
show "chain (\<lambda>i. ssum_approx i)"
unfolding ssum_approx_def by simp
show "(\<Squnion>i. ssum_approx i) = ID"
unfolding ssum_approx_def
by (simp add: lub_distribs ssum_map_ID)
show "\<And>i. finite_deflation (ssum_approx i)"
unfolding ssum_approx_def
by (intro finite_deflation_ssum_map finite_deflation_udom_approx)
qed
definition ssum_defl :: "defl \<rightarrow> defl \<rightarrow> defl"
where "ssum_defl = defl_fun2 ssum_approx ssum_map"
lemma cast_ssum_defl:
"cast\<cdot>(ssum_defl\<cdot>A\<cdot>B) =
udom_emb ssum_approx oo ssum_map\<cdot>(cast\<cdot>A)\<cdot>(cast\<cdot>B) oo udom_prj ssum_approx"
unfolding ssum_defl_def
apply (rule cast_defl_fun2 [OF ssum_approx])
apply (erule (1) finite_deflation_ssum_map)
done
instantiation ssum :: (bifinite, bifinite) bifinite
begin
definition
"emb = udom_emb ssum_approx oo ssum_map\<cdot>emb\<cdot>emb"
definition
"prj = ssum_map\<cdot>prj\<cdot>prj oo udom_prj ssum_approx"
definition
"defl (t::('a \<oplus> 'b) itself) = ssum_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
instance proof
show "ep_pair emb (prj :: udom \<rightarrow> 'a \<oplus> 'b)"
unfolding emb_ssum_def prj_ssum_def
using ep_pair_udom [OF ssum_approx]
by (intro ep_pair_comp ep_pair_ssum_map ep_pair_emb_prj)
next
show "cast\<cdot>DEFL('a \<oplus> 'b) = emb oo (prj :: udom \<rightarrow> 'a \<oplus> 'b)"
unfolding emb_ssum_def prj_ssum_def defl_ssum_def cast_ssum_defl
by (simp add: cast_DEFL oo_def cfun_eq_iff ssum_map_map)
qed
end
lemma DEFL_ssum:
"DEFL('a::bifinite \<oplus> 'b::bifinite) = ssum_defl\<cdot>DEFL('a)\<cdot>DEFL('b)"
by (rule defl_ssum_def)
end