(* Title: HOLCF/Up.thy
Author: Franz Regensburger and Brian Huffman
*)
header {* The type of lifted values *}
theory Up
imports Deflation
begin
default_sort cpo
subsection {* Definition of new type for lifting *}
datatype 'a u = Ibottom | Iup 'a
type_notation (xsymbols)
u ("(_\<^sub>\<bottom>)" [1000] 999)
primrec Ifup :: "('a \<rightarrow> 'b::pcpo) \<Rightarrow> 'a u \<Rightarrow> 'b" where
"Ifup f Ibottom = \<bottom>"
| "Ifup f (Iup x) = f\<cdot>x"
subsection {* Ordering on lifted cpo *}
instantiation u :: (cpo) below
begin
definition
below_up_def:
"(op \<sqsubseteq>) \<equiv> (\<lambda>x y. case x of Ibottom \<Rightarrow> True | Iup a \<Rightarrow>
(case y of Ibottom \<Rightarrow> False | Iup b \<Rightarrow> a \<sqsubseteq> b))"
instance ..
end
lemma minimal_up [iff]: "Ibottom \<sqsubseteq> z"
by (simp add: below_up_def)
lemma not_Iup_below [iff]: "\<not> Iup x \<sqsubseteq> Ibottom"
by (simp add: below_up_def)
lemma Iup_below [iff]: "(Iup x \<sqsubseteq> Iup y) = (x \<sqsubseteq> y)"
by (simp add: below_up_def)
subsection {* Lifted cpo is a partial order *}
instance u :: (cpo) po
proof
fix x :: "'a u"
show "x \<sqsubseteq> x"
unfolding below_up_def by (simp split: u.split)
next
fix x y :: "'a u"
assume "x \<sqsubseteq> y" "y \<sqsubseteq> x" thus "x = y"
unfolding below_up_def
by (auto split: u.split_asm intro: below_antisym)
next
fix x y z :: "'a u"
assume "x \<sqsubseteq> y" "y \<sqsubseteq> z" thus "x \<sqsubseteq> z"
unfolding below_up_def
by (auto split: u.split_asm intro: below_trans)
qed
subsection {* Lifted cpo is a cpo *}
lemma is_lub_Iup:
"range S <<| x \<Longrightarrow> range (\<lambda>i. Iup (S i)) <<| Iup x"
unfolding is_lub_def is_ub_def ball_simps
by (auto simp add: below_up_def split: u.split)
lemma up_chain_lemma:
assumes Y: "chain Y" obtains "\<forall>i. Y i = Ibottom"
| A k where "\<forall>i. Iup (A i) = Y (i + k)" and "chain A" and "range Y <<| Iup (\<Squnion>i. A i)"
proof (cases "\<exists>k. Y k \<noteq> Ibottom")
case True
then obtain k where k: "Y k \<noteq> Ibottom" ..
def A \<equiv> "\<lambda>i. THE a. Iup a = Y (i + k)"
have Iup_A: "\<forall>i. Iup (A i) = Y (i + k)"
proof
fix i :: nat
from Y le_add2 have "Y k \<sqsubseteq> Y (i + k)" by (rule chain_mono)
with k have "Y (i + k) \<noteq> Ibottom" by (cases "Y k", auto)
thus "Iup (A i) = Y (i + k)"
by (cases "Y (i + k)", simp_all add: A_def)
qed
from Y have chain_A: "chain A"
unfolding chain_def Iup_below [symmetric]
by (simp add: Iup_A)
hence "range A <<| (\<Squnion>i. A i)"
by (rule cpo_lubI)
hence "range (\<lambda>i. Iup (A i)) <<| Iup (\<Squnion>i. A i)"
by (rule is_lub_Iup)
hence "range (\<lambda>i. Y (i + k)) <<| Iup (\<Squnion>i. A i)"
by (simp only: Iup_A)
hence "range (\<lambda>i. Y i) <<| Iup (\<Squnion>i. A i)"
by (simp only: is_lub_range_shift [OF Y])
with Iup_A chain_A show ?thesis ..
next
case False
then have "\<forall>i. Y i = Ibottom" by simp
then show ?thesis ..
qed
instance u :: (cpo) cpo
proof
fix S :: "nat \<Rightarrow> 'a u"
assume S: "chain S"
thus "\<exists>x. range (\<lambda>i. S i) <<| x"
proof (rule up_chain_lemma)
assume "\<forall>i. S i = Ibottom"
hence "range (\<lambda>i. S i) <<| Ibottom"
by (simp add: lub_const)
thus ?thesis ..
next
fix A :: "nat \<Rightarrow> 'a"
assume "range S <<| Iup (\<Squnion>i. A i)"
thus ?thesis ..
qed
qed
subsection {* Lifted cpo is pointed *}
instance u :: (cpo) pcpo
by intro_classes fast
text {* for compatibility with old HOLCF-Version *}
lemma inst_up_pcpo: "\<bottom> = Ibottom"
by (rule minimal_up [THEN UU_I, symmetric])
subsection {* Continuity of \emph{Iup} and \emph{Ifup} *}
text {* continuity for @{term Iup} *}
lemma cont_Iup: "cont Iup"
apply (rule contI)
apply (rule is_lub_Iup)
apply (erule cpo_lubI)
done
text {* continuity for @{term Ifup} *}
lemma cont_Ifup1: "cont (\<lambda>f. Ifup f x)"
by (induct x, simp_all)
lemma monofun_Ifup2: "monofun (\<lambda>x. Ifup f x)"
apply (rule monofunI)
apply (case_tac x, simp)
apply (case_tac y, simp)
apply (simp add: monofun_cfun_arg)
done
lemma cont_Ifup2: "cont (\<lambda>x. Ifup f x)"
proof (rule contI2)
fix Y assume Y: "chain Y" and Y': "chain (\<lambda>i. Ifup f (Y i))"
from Y show "Ifup f (\<Squnion>i. Y i) \<sqsubseteq> (\<Squnion>i. Ifup f (Y i))"
proof (rule up_chain_lemma)
fix A and k
assume A: "\<forall>i. Iup (A i) = Y (i + k)"
assume "chain A" and "range Y <<| Iup (\<Squnion>i. A i)"
hence "Ifup f (\<Squnion>i. Y i) = (\<Squnion>i. Ifup f (Iup (A i)))"
by (simp add: thelubI contlub_cfun_arg)
also have "\<dots> = (\<Squnion>i. Ifup f (Y (i + k)))"
by (simp add: A)
also have "\<dots> = (\<Squnion>i. Ifup f (Y i))"
using Y' by (rule lub_range_shift)
finally show ?thesis by simp
qed simp
qed (rule monofun_Ifup2)
subsection {* Continuous versions of constants *}
definition
up :: "'a \<rightarrow> 'a u" where
"up = (\<Lambda> x. Iup x)"
definition
fup :: "('a \<rightarrow> 'b::pcpo) \<rightarrow> 'a u \<rightarrow> 'b" where
"fup = (\<Lambda> f p. Ifup f p)"
translations
"case l of XCONST up\<cdot>x \<Rightarrow> t" == "CONST fup\<cdot>(\<Lambda> x. t)\<cdot>l"
"\<Lambda>(XCONST up\<cdot>x). t" == "CONST fup\<cdot>(\<Lambda> x. t)"
text {* continuous versions of lemmas for @{typ "('a)u"} *}
lemma Exh_Up: "z = \<bottom> \<or> (\<exists>x. z = up\<cdot>x)"
apply (induct z)
apply (simp add: inst_up_pcpo)
apply (simp add: up_def cont_Iup)
done
lemma up_eq [simp]: "(up\<cdot>x = up\<cdot>y) = (x = y)"
by (simp add: up_def cont_Iup)
lemma up_inject: "up\<cdot>x = up\<cdot>y \<Longrightarrow> x = y"
by simp
lemma up_defined [simp]: "up\<cdot>x \<noteq> \<bottom>"
by (simp add: up_def cont_Iup inst_up_pcpo)
lemma not_up_less_UU: "\<not> up\<cdot>x \<sqsubseteq> \<bottom>"
by simp (* FIXME: remove? *)
lemma up_below [simp]: "up\<cdot>x \<sqsubseteq> up\<cdot>y \<longleftrightarrow> x \<sqsubseteq> y"
by (simp add: up_def cont_Iup)
lemma upE [case_names bottom up, cases type: u]:
"\<lbrakk>p = \<bottom> \<Longrightarrow> Q; \<And>x. p = up\<cdot>x \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
apply (cases p)
apply (simp add: inst_up_pcpo)
apply (simp add: up_def cont_Iup)
done
lemma up_induct [case_names bottom up, induct type: u]:
"\<lbrakk>P \<bottom>; \<And>x. P (up\<cdot>x)\<rbrakk> \<Longrightarrow> P x"
by (cases x, simp_all)
text {* lifting preserves chain-finiteness *}
lemma up_chain_cases:
assumes Y: "chain Y" obtains "\<forall>i. Y i = \<bottom>"
| A k where "\<forall>i. up\<cdot>(A i) = Y (i + k)" and "chain A" and "(\<Squnion>i. Y i) = up\<cdot>(\<Squnion>i. A i)"
apply (rule up_chain_lemma [OF Y])
apply (simp_all add: inst_up_pcpo up_def cont_Iup thelubI)
done
lemma compact_up: "compact x \<Longrightarrow> compact (up\<cdot>x)"
apply (rule compactI2)
apply (erule up_chain_cases)
apply simp
apply (drule (1) compactD2, simp)
apply (erule exE)
apply (drule_tac f="up" and x="x" in monofun_cfun_arg)
apply (simp, erule exI)
done
lemma compact_upD: "compact (up\<cdot>x) \<Longrightarrow> compact x"
unfolding compact_def
by (drule adm_subst [OF cont_Rep_cfun2 [where f=up]], simp)
lemma compact_up_iff [simp]: "compact (up\<cdot>x) = compact x"
by (safe elim!: compact_up compact_upD)
instance u :: (chfin) chfin
apply intro_classes
apply (erule compact_imp_max_in_chain)
apply (rule_tac p="\<Squnion>i. Y i" in upE, simp_all)
done
text {* properties of fup *}
lemma fup1 [simp]: "fup\<cdot>f\<cdot>\<bottom> = \<bottom>"
by (simp add: fup_def cont_Ifup1 cont_Ifup2 inst_up_pcpo cont2cont_LAM)
lemma fup2 [simp]: "fup\<cdot>f\<cdot>(up\<cdot>x) = f\<cdot>x"
by (simp add: up_def fup_def cont_Iup cont_Ifup1 cont_Ifup2 cont2cont_LAM)
lemma fup3 [simp]: "fup\<cdot>up\<cdot>x = x"
by (cases x, simp_all)
subsection {* Map function for lifted cpo *}
definition
u_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a u \<rightarrow> 'b u"
where
"u_map = (\<Lambda> f. fup\<cdot>(up oo f))"
lemma u_map_strict [simp]: "u_map\<cdot>f\<cdot>\<bottom> = \<bottom>"
unfolding u_map_def by simp
lemma u_map_up [simp]: "u_map\<cdot>f\<cdot>(up\<cdot>x) = up\<cdot>(f\<cdot>x)"
unfolding u_map_def by simp
lemma u_map_ID: "u_map\<cdot>ID = ID"
unfolding u_map_def by (simp add: cfun_eq_iff eta_cfun)
lemma u_map_map: "u_map\<cdot>f\<cdot>(u_map\<cdot>g\<cdot>p) = u_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>p"
by (induct p) simp_all
lemma ep_pair_u_map: "ep_pair e p \<Longrightarrow> ep_pair (u_map\<cdot>e) (u_map\<cdot>p)"
apply default
apply (case_tac x, simp, simp add: ep_pair.e_inverse)
apply (case_tac y, simp, simp add: ep_pair.e_p_below)
done
lemma deflation_u_map: "deflation d \<Longrightarrow> deflation (u_map\<cdot>d)"
apply default
apply (case_tac x, simp, simp add: deflation.idem)
apply (case_tac x, simp, simp add: deflation.below)
done
lemma finite_deflation_u_map:
assumes "finite_deflation d" shows "finite_deflation (u_map\<cdot>d)"
proof (rule finite_deflation_intro)
interpret d: finite_deflation d by fact
have "deflation d" by fact
thus "deflation (u_map\<cdot>d)" by (rule deflation_u_map)
have "{x. u_map\<cdot>d\<cdot>x = x} \<subseteq> insert \<bottom> ((\<lambda>x. up\<cdot>x) ` {x. d\<cdot>x = x})"
by (rule subsetI, case_tac x, simp_all)
thus "finite {x. u_map\<cdot>d\<cdot>x = x}"
by (rule finite_subset, simp add: d.finite_fixes)
qed
end