(* Title: CCL/Gfp.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
*)
header {* Greatest fixed points *}
theory Gfp
imports Lfp
begin
definition
gfp :: "['a set=>'a set] => 'a set" where -- "greatest fixed point"
"gfp(f) == Union({u. u <= f(u)})"
(* gfp(f) is the least upper bound of {u. u <= f(u)} *)
lemma gfp_upperbound: "[| A <= f(A) |] ==> A <= gfp(f)"
unfolding gfp_def by blast
lemma gfp_least: "[| !!u. u <= f(u) ==> u<=A |] ==> gfp(f) <= A"
unfolding gfp_def by blast
lemma gfp_lemma2: "mono(f) ==> gfp(f) <= f(gfp(f))"
by (rule gfp_least, rule subset_trans, assumption, erule monoD,
rule gfp_upperbound, assumption)
lemma gfp_lemma3: "mono(f) ==> f(gfp(f)) <= gfp(f)"
by (rule gfp_upperbound, frule monoD, rule gfp_lemma2, assumption+)
lemma gfp_Tarski: "mono(f) ==> gfp(f) = f(gfp(f))"
by (rule equalityI gfp_lemma2 gfp_lemma3 | assumption)+
(*** Coinduction rules for greatest fixed points ***)
(*weak version*)
lemma coinduct: "[| a: A; A <= f(A) |] ==> a : gfp(f)"
by (blast dest: gfp_upperbound)
lemma coinduct2_lemma:
"[| A <= f(A) Un gfp(f); mono(f) |] ==>
A Un gfp(f) <= f(A Un gfp(f))"
apply (rule subset_trans)
prefer 2
apply (erule mono_Un)
apply (rule subst, erule gfp_Tarski)
apply (erule Un_least)
apply (rule Un_upper2)
done
(*strong version, thanks to Martin Coen*)
lemma coinduct2:
"[| a: A; A <= f(A) Un gfp(f); mono(f) |] ==> a : gfp(f)"
apply (rule coinduct)
prefer 2
apply (erule coinduct2_lemma, assumption)
apply blast
done
(*** Even Stronger version of coinduct [by Martin Coen]
- instead of the condition A <= f(A)
consider A <= (f(A) Un f(f(A)) ...) Un gfp(A) ***)
lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un A Un B)"
by (rule monoI) (blast dest: monoD)
lemma coinduct3_lemma:
assumes prem: "A <= f(lfp(%x. f(x) Un A Un gfp(f)))"
and mono: "mono(f)"
shows "lfp(%x. f(x) Un A Un gfp(f)) <= f(lfp(%x. f(x) Un A Un gfp(f)))"
apply (rule subset_trans)
apply (rule mono [THEN coinduct3_mono_lemma, THEN lfp_lemma3])
apply (rule Un_least [THEN Un_least])
apply (rule subset_refl)
apply (rule prem)
apply (rule mono [THEN gfp_Tarski, THEN equalityD1, THEN subset_trans])
apply (rule mono [THEN monoD])
apply (subst mono [THEN coinduct3_mono_lemma, THEN lfp_Tarski])
apply (rule Un_upper2)
done
lemma coinduct3:
assumes 1: "a:A"
and 2: "A <= f(lfp(%x. f(x) Un A Un gfp(f)))"
and 3: "mono(f)"
shows "a : gfp(f)"
apply (rule coinduct)
prefer 2
apply (rule coinduct3_lemma [OF 2 3])
apply (subst lfp_Tarski [OF coinduct3_mono_lemma, OF 3])
using 1 apply blast
done
subsection {* Definition forms of @{text "gfp_Tarski"}, to control unfolding *}
lemma def_gfp_Tarski: "[| h==gfp(f); mono(f) |] ==> h = f(h)"
apply unfold
apply (erule gfp_Tarski)
done
lemma def_coinduct: "[| h==gfp(f); a:A; A <= f(A) |] ==> a: h"
apply unfold
apply (erule coinduct)
apply assumption
done
lemma def_coinduct2: "[| h==gfp(f); a:A; A <= f(A) Un h; mono(f) |] ==> a: h"
apply unfold
apply (erule coinduct2)
apply assumption
apply assumption
done
lemma def_coinduct3: "[| h==gfp(f); a:A; A <= f(lfp(%x. f(x) Un A Un h)); mono(f) |] ==> a: h"
apply unfold
apply (erule coinduct3)
apply assumption
apply assumption
done
(*Monotonicity of gfp!*)
lemma gfp_mono: "[| mono(f); !!Z. f(Z)<=g(Z) |] ==> gfp(f) <= gfp(g)"
apply (rule gfp_upperbound)
apply (rule subset_trans)
apply (rule gfp_lemma2)
apply assumption
apply (erule meta_spec)
done
end