(* Title: HOL/FunDef.thy
ID: $Id$
Author: Alexander Krauss, TU Muenchen
*)
header {* General recursive function definitions *}
theory FunDef
imports Wellfounded
uses
("Tools/function_package/fundef_lib.ML")
("Tools/function_package/fundef_common.ML")
("Tools/function_package/inductive_wrap.ML")
("Tools/function_package/context_tree.ML")
("Tools/function_package/fundef_core.ML")
("Tools/function_package/sum_tree.ML")
("Tools/function_package/mutual.ML")
("Tools/function_package/pattern_split.ML")
("Tools/function_package/fundef_package.ML")
("Tools/function_package/auto_term.ML")
("Tools/function_package/measure_functions.ML")
("Tools/function_package/lexicographic_order.ML")
("Tools/function_package/fundef_datatype.ML")
("Tools/function_package/induction_scheme.ML")
begin
text {* Definitions with default value. *}
definition
THE_default :: "'a \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> 'a" where
"THE_default d P = (if (\<exists>!x. P x) then (THE x. P x) else d)"
lemma THE_defaultI': "\<exists>!x. P x \<Longrightarrow> P (THE_default d P)"
by (simp add: theI' THE_default_def)
lemma THE_default1_equality:
"\<lbrakk>\<exists>!x. P x; P a\<rbrakk> \<Longrightarrow> THE_default d P = a"
by (simp add: the1_equality THE_default_def)
lemma THE_default_none:
"\<not>(\<exists>!x. P x) \<Longrightarrow> THE_default d P = d"
by (simp add:THE_default_def)
lemma fundef_ex1_existence:
assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
assumes ex1: "\<exists>!y. G x y"
shows "G x (f x)"
apply (simp only: f_def)
apply (rule THE_defaultI')
apply (rule ex1)
done
lemma fundef_ex1_uniqueness:
assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
assumes ex1: "\<exists>!y. G x y"
assumes elm: "G x (h x)"
shows "h x = f x"
apply (simp only: f_def)
apply (rule THE_default1_equality [symmetric])
apply (rule ex1)
apply (rule elm)
done
lemma fundef_ex1_iff:
assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
assumes ex1: "\<exists>!y. G x y"
shows "(G x y) = (f x = y)"
apply (auto simp:ex1 f_def THE_default1_equality)
apply (rule THE_defaultI')
apply (rule ex1)
done
lemma fundef_default_value:
assumes f_def: "f == (\<lambda>x::'a. THE_default (d x) (\<lambda>y. G x y))"
assumes graph: "\<And>x y. G x y \<Longrightarrow> D x"
assumes "\<not> D x"
shows "f x = d x"
proof -
have "\<not>(\<exists>y. G x y)"
proof
assume "\<exists>y. G x y"
hence "D x" using graph ..
with `\<not> D x` show False ..
qed
hence "\<not>(\<exists>!y. G x y)" by blast
thus ?thesis
unfolding f_def
by (rule THE_default_none)
qed
definition in_rel_def[simp]:
"in_rel R x y == (x, y) \<in> R"
lemma wf_in_rel:
"wf R \<Longrightarrow> wfP (in_rel R)"
by (simp add: wfP_def)
inductive is_measure :: "('a \<Rightarrow> nat) \<Rightarrow> bool"
where is_measure_trivial: "is_measure f"
use "Tools/function_package/fundef_lib.ML"
use "Tools/function_package/fundef_common.ML"
use "Tools/function_package/inductive_wrap.ML"
use "Tools/function_package/context_tree.ML"
use "Tools/function_package/fundef_core.ML"
use "Tools/function_package/sum_tree.ML"
use "Tools/function_package/mutual.ML"
use "Tools/function_package/pattern_split.ML"
use "Tools/function_package/auto_term.ML"
use "Tools/function_package/fundef_package.ML"
use "Tools/function_package/measure_functions.ML"
use "Tools/function_package/lexicographic_order.ML"
use "Tools/function_package/fundef_datatype.ML"
use "Tools/function_package/induction_scheme.ML"
setup {*
FundefPackage.setup
#> InductionScheme.setup
#> MeasureFunctions.setup
#> LexicographicOrder.setup
#> FundefDatatype.setup
*}
lemma let_cong [fundef_cong]:
"M = N \<Longrightarrow> (\<And>x. x = N \<Longrightarrow> f x = g x) \<Longrightarrow> Let M f = Let N g"
unfolding Let_def by blast
lemmas [fundef_cong] =
if_cong image_cong INT_cong UN_cong
bex_cong ball_cong imp_cong
lemma split_cong [fundef_cong]:
"(\<And>x y. (x, y) = q \<Longrightarrow> f x y = g x y) \<Longrightarrow> p = q
\<Longrightarrow> split f p = split g q"
by (auto simp: split_def)
lemma comp_cong [fundef_cong]:
"f (g x) = f' (g' x') \<Longrightarrow> (f o g) x = (f' o g') x'"
unfolding o_apply .
subsection {* Setup for termination proofs *}
text {* Rules for generating measure functions *}
lemma [measure_function]: "is_measure size"
by (rule is_measure_trivial)
lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (fst p))"
by (rule is_measure_trivial)
lemma [measure_function]: "is_measure f \<Longrightarrow> is_measure (\<lambda>p. f (snd p))"
by (rule is_measure_trivial)
lemma termination_basic_simps[termination_simp]:
"x < (y::nat) \<Longrightarrow> x < y + z"
"x < z \<Longrightarrow> x < y + z"
"x \<le> y \<Longrightarrow> x \<le> y + (z::nat)"
"x \<le> z \<Longrightarrow> x \<le> y + (z::nat)"
"x < y \<Longrightarrow> x \<le> (y::nat)"
by arith+
declare le_imp_less_Suc[termination_simp]
lemma prod_size_simp[termination_simp]:
"prod_size f g p = f (fst p) + g (snd p) + Suc 0"
by (induct p) auto
end