(* Title: ZF/add_ind_def.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
Fixedpoint definition module -- for Inductive/Coinductive Definitions
Features:
* least or greatest fixedpoints
* user-specified product and sum constructions
* mutually recursive definitions
* definitions involving arbitrary monotone operators
* automatically proves introduction and elimination rules
The recursive sets must *already* be declared as constants in parent theory!
Introduction rules have the form
[| ti:M(Sj), ..., P(x), ... |] ==> t: Sk |]
where M is some monotone operator (usually the identity)
P(x) is any (non-conjunctive) side condition on the free variables
ti, t are any terms
Sj, Sk are two of the sets being defined in mutual recursion
Sums are used only for mutual recursion;
Products are used only to derive "streamlined" induction rules for relations
*)
signature FP = (** Description of a fixed point operator **)
sig
val oper : term (*fixed point operator*)
val bnd_mono : term (*monotonicity predicate*)
val bnd_monoI : thm (*intro rule for bnd_mono*)
val subs : thm (*subset theorem for fp*)
val Tarski : thm (*Tarski's fixed point theorem*)
val induct : thm (*induction/coinduction rule*)
end;
signature PR = (** Description of a Cartesian product **)
sig
val sigma : term (*Cartesian product operator*)
val pair : term (*pairing operator*)
val split_const : term (*splitting operator*)
val fsplit_const : term (*splitting operator for formulae*)
val pair_iff : thm (*injectivity of pairing, using <->*)
val split_eq : thm (*equality rule for split*)
val fsplitI : thm (*intro rule for fsplit*)
val fsplitD : thm (*destruct rule for fsplit*)
val fsplitE : thm (*elim rule for fsplit*)
end;
signature SU = (** Description of a disjoint sum **)
sig
val sum : term (*disjoint sum operator*)
val inl : term (*left injection*)
val inr : term (*right injection*)
val elim : term (*case operator*)
val case_inl : thm (*inl equality rule for case*)
val case_inr : thm (*inr equality rule for case*)
val inl_iff : thm (*injectivity of inl, using <->*)
val inr_iff : thm (*injectivity of inr, using <->*)
val distinct : thm (*distinctness of inl, inr using <->*)
val distinct' : thm (*distinctness of inr, inl using <->*)
end;
signature ADD_INDUCTIVE_DEF =
sig
val add_fp_def_i : term list * term list * term list -> theory -> theory
val add_fp_def : (string*string) list * string list -> theory -> theory
val add_constructs_def :
string list * ((string*typ*mixfix) *
string * term list * term list) list list ->
theory -> theory
end;
(*Declares functions to add fixedpoint/constructor defs to a theory*)
functor Add_inductive_def_Fun
(structure Fp: FP and Pr : PR and Su : SU) : ADD_INDUCTIVE_DEF =
struct
open Logic Ind_Syntax;
(*internal version*)
fun add_fp_def_i (rec_tms, domts, intr_tms) thy =
let
val sign = sign_of thy;
(*recT and rec_params should agree for all mutually recursive components*)
val (Const(_,recT),rec_params) = strip_comb (hd rec_tms)
and rec_hds = map head_of rec_tms;
val rec_names = map (#1 o dest_Const) rec_hds;
val _ = assert_all Syntax.is_identifier rec_names
(fn a => "Name of recursive set not an identifier: " ^ a);
val _ = assert_all (is_some o Sign.const_type sign) rec_names
(fn a => "Recursive set not previously declared as constant: " ^ a);
local (*Checking the introduction rules*)
val intr_sets = map (#2 o rule_concl_msg sign) intr_tms;
fun intr_ok set =
case head_of set of Const(a,recT) => a mem rec_names | _ => false;
in
val _ = assert_all intr_ok intr_sets
(fn t => "Conclusion of rule does not name a recursive set: " ^
Sign.string_of_term sign t);
end;
val _ = assert_all is_Free rec_params
(fn t => "Param in recursion term not a free variable: " ^
Sign.string_of_term sign t);
(*** Construct the lfp definition ***)
val mk_variant = variant (foldr add_term_names (intr_tms,[]));
val z' = mk_variant"z" and X' = mk_variant"X" and w' = mk_variant"w";
fun dest_tprop (Const("Trueprop",_) $ P) = P
| dest_tprop Q = error ("Ill-formed premise of introduction rule: " ^
Sign.string_of_term sign Q);
(*Makes a disjunct from an introduction rule*)
fun lfp_part intr = (*quantify over rule's free vars except parameters*)
let val prems = map dest_tprop (strip_imp_prems intr)
val _ = seq (fn rec_hd => seq (chk_prem rec_hd) prems) rec_hds
val exfrees = term_frees intr \\ rec_params
val zeq = eq_const $ (Free(z',iT)) $ (#1 (rule_concl intr))
in foldr mk_exists (exfrees, fold_bal (app conj) (zeq::prems)) end;
val dom_sum = fold_bal (app Su.sum) domts;
(*The Part(A,h) terms -- compose injections to make h*)
fun mk_Part (Bound 0) = Free(X',iT) (*no mutual rec, no Part needed*)
| mk_Part h = Part_const $ Free(X',iT) $ Abs(w',iT,h);
(*Access to balanced disjoint sums via injections*)
val parts =
map mk_Part (accesses_bal (ap Su.inl, ap Su.inr, Bound 0)
(length rec_tms));
(*replace each set by the corresponding Part(A,h)*)
val part_intrs = map (subst_free (rec_tms ~~ parts) o lfp_part) intr_tms;
val lfp_abs = absfree(X', iT,
mk_Collect(z', dom_sum, fold_bal (app disj) part_intrs));
val lfp_rhs = Fp.oper $ dom_sum $ lfp_abs
val _ = seq (fn rec_hd => deny (rec_hd occs lfp_rhs)
"Illegal occurrence of recursion operator")
rec_hds;
(*** Make the new theory ***)
(*A key definition:
If no mutual recursion then it equals the one recursive set.
If mutual recursion then it differs from all the recursive sets. *)
val big_rec_name = space_implode "_" rec_names;
(*Big_rec... is the union of the mutually recursive sets*)
val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params);
(*The individual sets must already be declared*)
val axpairs = map mk_defpair
((big_rec_tm, lfp_rhs) ::
(case parts of
[_] => [] (*no mutual recursion*)
| _ => rec_tms ~~ (*define the sets as Parts*)
map (subst_atomic [(Free(X',iT),big_rec_tm)]) parts));
val _ = seq (writeln o Sign.string_of_term sign o #2) axpairs
in thy |> add_defs_i axpairs end
(*external, string-based version; needed?*)
fun add_fp_def (rec_doms, sintrs) thy =
let val sign = sign_of thy;
val rec_tms = map (readtm sign iT o fst) rec_doms
and domts = map (readtm sign iT o snd) rec_doms
val intr_tms = map (readtm sign propT) sintrs
in add_fp_def_i (rec_tms, domts, intr_tms) thy end
(*Expects the recursive sets to have been defined already.
con_ty_lists specifies the constructors in the form (name,prems,mixfix) *)
fun add_constructs_def (rec_names, con_ty_lists) thy =
let
val _ = writeln" Defining the constructor functions...";
val case_name = "f"; (*name for case variables*)
(** Define the constructors **)
(*The empty tuple is 0*)
fun mk_tuple [] = Const("0",iT)
| mk_tuple args = foldr1 (app Pr.pair) args;
fun mk_inject n k u = access_bal(ap Su.inl, ap Su.inr, u) n k;
val npart = length rec_names; (*total # of mutually recursive parts*)
(*Make constructor definition; kpart is # of this mutually recursive part*)
fun mk_con_defs (kpart, con_ty_list) =
let val ncon = length con_ty_list (*number of constructors*)
fun mk_def (((id,T,syn), name, args, prems), kcon) =
(*kcon is index of constructor*)
mk_defpair (list_comb (Const(name,T), args),
mk_inject npart kpart
(mk_inject ncon kcon (mk_tuple args)))
in map mk_def (con_ty_list ~~ (1 upto ncon)) end;
(** Define the case operator **)
(*Combine split terms using case; yields the case operator for one part*)
fun call_case case_list =
let fun call_f (free,args) =
ap_split Pr.split_const free (map (#2 o dest_Free) args)
in fold_bal (app Su.elim) (map call_f case_list) end;
(** Generating function variables for the case definition
Non-identifiers (e.g. infixes) get a name of the form f_op_nnn. **)
(*Treatment of a single constructor*)
fun add_case (((id,T,syn), name, args, prems), (opno,cases)) =
if Syntax.is_identifier id
then (opno,
(Free(case_name ^ "_" ^ id, T), args) :: cases)
else (opno+1,
(Free(case_name ^ "_op_" ^ string_of_int opno, T), args) ::
cases)
(*Treatment of a list of constructors, for one part*)
fun add_case_list (con_ty_list, (opno,case_lists)) =
let val (opno',case_list) = foldr add_case (con_ty_list, (opno,[]))
in (opno', case_list :: case_lists) end;
(*Treatment of all parts*)
val (_, case_lists) = foldr add_case_list (con_ty_lists, (1,[]));
val big_case_typ = flat (map (map (#2 o #1)) con_ty_lists) ---> (iT-->iT);
val big_rec_name = space_implode "_" rec_names;
val big_case_name = big_rec_name ^ "_case";
(*The list of all the function variables*)
val big_case_args = flat (map (map #1) case_lists);
val big_case_tm =
list_comb (Const(big_case_name, big_case_typ), big_case_args);
val big_case_def = mk_defpair
(big_case_tm, fold_bal (app Su.elim) (map call_case case_lists));
(** Build the new theory **)
val const_decs =
(big_case_name, big_case_typ, NoSyn) :: map #1 (flat con_ty_lists);
val axpairs =
big_case_def :: flat (map mk_con_defs ((1 upto npart) ~~ con_ty_lists))
in thy |> add_consts_i const_decs |> add_defs_i axpairs end;
end;