theory Sets = Main:
section{*Sets, Functions and Relations*}
subsection{*Set Notation*}
term "A \<union> B"
term "A \<inter> B"
term "A - B"
term "a \<in> A"
term "b \<notin> A"
term "{a,b}"
term "{x. P x}"
term "{x+y+eps |x y. x < y}"
term "\<Union> M"
term "\<Union>a \<in> A. F a"
subsection{*Functions*}
thm id_def
thm o_assoc
thm image_Int
thm vimage_Compl
subsection{*Relations*}
thm Id_def
thm converse_comp
thm Image_def
thm relpow.simps
thm rtrancl_idemp
thm trancl_converse
subsection{*Wellfoundedness*}
thm wf_def
thm wf_iff_no_infinite_down_chain
subsection{*Fixed Point Operators*}
thm lfp_def gfp_def
thm lfp_unfold
thm lfp_induct
subsection{*Case Study: Verified Model Checking*}
typedecl state
consts M :: "(state \<times> state)set";
typedecl atom
consts L :: "state \<Rightarrow> atom set"
datatype formula = Atom atom
| Neg formula
| And formula formula
| AX formula
| EF formula
consts valid :: "state \<Rightarrow> formula \<Rightarrow> bool" ("(_ \<Turnstile> _)" [80,80] 80)
primrec
"s \<Turnstile> Atom a = (a \<in> L s)"
"s \<Turnstile> Neg f = (\<not>(s \<Turnstile> f))"
"s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
"s \<Turnstile> AX f = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
"s \<Turnstile> EF f = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)";
consts mc :: "formula \<Rightarrow> state set";
primrec
"mc(Atom a) = {s. a \<in> L s}"
"mc(Neg f) = -mc f"
"mc(And f g) = mc f \<inter> mc g"
"mc(AX f) = {s. \<forall>t. (s,t) \<in> M \<longrightarrow> t \<in> mc f}"
"mc(EF f) = lfp(\<lambda>T. mc f \<union> (M\<inverse> `` T))"
lemma mono_ef: "mono(\<lambda>T. A \<union> (M\<inverse> `` T))"
apply(rule monoI)
apply blast
done
lemma EF_lemma:
"lfp(\<lambda>T. A \<union> (M\<inverse> `` T)) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}"
apply(rule equalityI)
thm lfp_lowerbound
apply(rule lfp_lowerbound)
apply(blast intro: rtrancl_trans);
apply(rule subsetI)
apply(simp, clarify)
apply(erule converse_rtrancl_induct)
thm lfp_unfold[OF mono_ef]
apply(subst lfp_unfold[OF mono_ef])
apply(blast)
apply(subst lfp_unfold[OF mono_ef])
apply(blast)
done
theorem "mc f = {s. s \<Turnstile> f}";
apply(induct_tac f);
apply(auto simp add: EF_lemma);
done;
text{*
\begin{exercise}
@{term AX} has a dual operator @{term EN}\footnote{We cannot use the customary @{text EX}
as that is the \textsc{ascii}-equivalent of @{text"\<exists>"}}
(``there exists a next state such that'') with the intended semantics
@{prop[display]"(s \<Turnstile> EN f) = (EX t. (s,t) : M & t \<Turnstile> f)"}
Fortunately, @{term"EN f"} can already be expressed as a PDL formula. How?
Show that the semantics for @{term EF} satisfies the following recursion equation:
@{prop[display]"(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> EN(EF f))"}
\end{exercise}
*}
end