replaced archaic Display.pretty_fact by FindTheorems.pretty_thm, which observes the context properly (as did the former prt_fact already);
minor tuning according to Isabelle coding conventions;
(* Title: HOL/Typerep.thy
Author: Florian Haftmann, TU Muenchen
*)
header {* Reflecting Pure types into HOL *}
theory Typerep
imports Plain List Code_Message
begin
datatype typerep = Typerep message_string "typerep list"
class typerep =
fixes typerep :: "'a\<Colon>{} itself \<Rightarrow> typerep"
begin
definition typerep_of :: "'a \<Rightarrow> typerep" where
[simp]: "typerep_of x = typerep TYPE('a)"
end
setup {*
let
fun typerep_tr (*"_TYPEREP"*) [ty] =
Lexicon.const @{const_syntax typerep} $ (Lexicon.const "_constrain" $ Lexicon.const "TYPE" $
(Lexicon.const "itself" $ ty))
| typerep_tr (*"_TYPEREP"*) ts = raise TERM ("typerep_tr", ts);
fun typerep_tr' show_sorts (*"typerep"*)
(Type ("fun", [Type ("itself", [T]), _])) (Const (@{const_syntax TYPE}, _) :: ts) =
Term.list_comb (Lexicon.const "_TYPEREP" $ Syntax.term_of_typ show_sorts T, ts)
| typerep_tr' _ T ts = raise Match;
in
Sign.add_syntax_i
[("_TYPEREP", SimpleSyntax.read_typ "type => logic", Delimfix "(1TYPEREP/(1'(_')))")]
#> Sign.add_trfuns ([], [("_TYPEREP", typerep_tr)], [], [])
#> Sign.add_trfunsT [(@{const_syntax typerep}, typerep_tr')]
end
*}
ML {*
structure Typerep =
struct
fun mk f (Type (tyco, tys)) =
@{term Typerep} $ Message_String.mk tyco
$ HOLogic.mk_list @{typ typerep} (map (mk f) tys)
| mk f (TFree v) =
f v;
fun typerep ty =
Const (@{const_name typerep}, Term.itselfT ty --> @{typ typerep})
$ Logic.mk_type ty;
fun add_def tyco thy =
let
val sorts = replicate (Sign.arity_number thy tyco) @{sort typerep};
val vs = Name.names Name.context "'a" sorts;
val ty = Type (tyco, map TFree vs);
val lhs = Const (@{const_name typerep}, Term.itselfT ty --> @{typ typerep})
$ Free ("T", Term.itselfT ty);
val rhs = mk (typerep o TFree) ty;
val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs));
in
thy
|> TheoryTarget.instantiation ([tyco], vs, @{sort typerep})
|> `(fn lthy => Syntax.check_term lthy eq)
|-> (fn eq => Specification.definition (NONE, (Attrib.empty_binding, eq)))
|> snd
|> Class.prove_instantiation_instance (K (Class.intro_classes_tac []))
|> LocalTheory.exit_global
end;
fun perhaps_add_def tyco thy =
let
val inst = can (Sorts.mg_domain (Sign.classes_of thy) tyco) @{sort typerep}
in if inst then thy else add_def tyco thy end;
end;
*}
setup {*
Typerep.add_def @{type_name prop}
#> Typerep.add_def @{type_name fun}
#> Typerep.add_def @{type_name itself}
#> Typerep.add_def @{type_name bool}
#> TypedefPackage.interpretation Typerep.perhaps_add_def
*}
lemma [code]:
"eq_class.eq (Typerep tyco1 tys1) (Typerep tyco2 tys2) \<longleftrightarrow> eq_class.eq tyco1 tyco2
\<and> list_all2 eq_class.eq tys1 tys2"
by (auto simp add: equals_eq [symmetric] list_all2_eq [symmetric])
code_type typerep
(SML "Term.typ")
code_const Typerep
(SML "Term.Type/ (_, _)")
code_reserved SML Term
hide (open) const typerep Typerep
end