(* Title: HOLCF/Cprod.thy
ID: $Id$
Author: Franz Regensburger
Partial ordering for cartesian product of HOL products.
*)
header {* The cpo of cartesian products *}
theory Cprod
imports Cfun
begin
defaultsort cpo
subsection {* Type @{typ unit} is a pcpo *}
instance unit :: sq_ord ..
defs (overloaded)
less_unit_def [simp]: "x \<sqsubseteq> (y::unit) \<equiv> True"
instance unit :: po
by intro_classes simp_all
instance unit :: cpo
by intro_classes (simp add: is_lub_def is_ub_def)
instance unit :: pcpo
by intro_classes simp
constdefs
unit_when :: "'a \<rightarrow> unit \<rightarrow> 'a"
"unit_when \<equiv> \<Lambda> a _. a"
translations
"\<Lambda>(). t" == "unit_when\<cdot>t"
lemma unit_when [simp]: "unit_when\<cdot>a\<cdot>u = a"
by (simp add: unit_when_def)
subsection {* Product type is a partial order *}
instance "*" :: (sq_ord, sq_ord) sq_ord ..
defs (overloaded)
less_cprod_def: "(op \<sqsubseteq>) \<equiv> \<lambda>p1 p2. (fst p1 \<sqsubseteq> fst p2 \<and> snd p1 \<sqsubseteq> snd p2)"
lemma refl_less_cprod: "(p::'a * 'b) \<sqsubseteq> p"
by (simp add: less_cprod_def)
lemma antisym_less_cprod: "\<lbrakk>(p1::'a * 'b) \<sqsubseteq> p2; p2 \<sqsubseteq> p1\<rbrakk> \<Longrightarrow> p1 = p2"
apply (unfold less_cprod_def)
apply (rule injective_fst_snd)
apply (fast intro: antisym_less)
apply (fast intro: antisym_less)
done
lemma trans_less_cprod: "\<lbrakk>(p1::'a*'b) \<sqsubseteq> p2; p2 \<sqsubseteq> p3\<rbrakk> \<Longrightarrow> p1 \<sqsubseteq> p3"
apply (unfold less_cprod_def)
apply (fast intro: trans_less)
done
instance "*" :: (cpo, cpo) po
by intro_classes
(assumption | rule refl_less_cprod antisym_less_cprod trans_less_cprod)+
subsection {* Monotonicity of @{text "(_,_)"}, @{term fst}, @{term snd} *}
text {* Pair @{text "(_,_)"} is monotone in both arguments *}
lemma monofun_pair1: "monofun (\<lambda>x. (x, y))"
by (simp add: monofun_def less_cprod_def)
lemma monofun_pair2: "monofun (\<lambda>y. (x, y))"
by (simp add: monofun_def less_cprod_def)
lemma monofun_pair:
"\<lbrakk>x1 \<sqsubseteq> x2; y1 \<sqsubseteq> y2\<rbrakk> \<Longrightarrow> (x1, y1) \<sqsubseteq> (x2, y2)"
by (simp add: less_cprod_def)
text {* @{term fst} and @{term snd} are monotone *}
lemma monofun_fst: "monofun fst"
by (simp add: monofun_def less_cprod_def)
lemma monofun_snd: "monofun snd"
by (simp add: monofun_def less_cprod_def)
subsection {* Product type is a cpo *}
lemma lub_cprod:
"chain S \<Longrightarrow> range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
apply (rule is_lubI)
apply (rule ub_rangeI)
apply (rule_tac t = "S i" in surjective_pairing [THEN ssubst])
apply (rule monofun_pair)
apply (rule is_ub_thelub)
apply (erule monofun_fst [THEN ch2ch_monofun])
apply (rule is_ub_thelub)
apply (erule monofun_snd [THEN ch2ch_monofun])
apply (rule_tac t = "u" in surjective_pairing [THEN ssubst])
apply (rule monofun_pair)
apply (rule is_lub_thelub)
apply (erule monofun_fst [THEN ch2ch_monofun])
apply (erule monofun_fst [THEN ub2ub_monofun])
apply (rule is_lub_thelub)
apply (erule monofun_snd [THEN ch2ch_monofun])
apply (erule monofun_snd [THEN ub2ub_monofun])
done
lemma thelub_cprod:
"chain S \<Longrightarrow> lub (range S) = (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))"
by (rule lub_cprod [THEN thelubI])
lemma cpo_cprod:
"chain (S::nat \<Rightarrow> 'a::cpo * 'b::cpo) \<Longrightarrow> \<exists>x. range S <<| x"
by (rule exI, erule lub_cprod)
instance "*" :: (cpo, cpo) cpo
by intro_classes (rule cpo_cprod)
subsection {* Product type is pointed *}
lemma minimal_cprod: "(\<bottom>, \<bottom>) \<sqsubseteq> p"
by (simp add: less_cprod_def)
lemma least_cprod: "EX x::'a::pcpo * 'b::pcpo. ALL y. x \<sqsubseteq> y"
apply (rule_tac x = "(\<bottom>, \<bottom>)" in exI)
apply (rule minimal_cprod [THEN allI])
done
instance "*" :: (pcpo, pcpo) pcpo
by intro_classes (rule least_cprod)
text {* for compatibility with old HOLCF-Version *}
lemma inst_cprod_pcpo: "UU = (UU,UU)"
by (rule minimal_cprod [THEN UU_I, symmetric])
subsection {* Continuity of @{text "(_,_)"}, @{term fst}, @{term snd} *}
lemma contlub_pair1: "contlub (\<lambda>x. (x, y))"
apply (rule contlubI)
apply (subst thelub_cprod)
apply (erule monofun_pair1 [THEN ch2ch_monofun])
apply simp
done
lemma contlub_pair2: "contlub (\<lambda>y. (x, y))"
apply (rule contlubI)
apply (subst thelub_cprod)
apply (erule monofun_pair2 [THEN ch2ch_monofun])
apply simp
done
lemma cont_pair1: "cont (\<lambda>x. (x, y))"
apply (rule monocontlub2cont)
apply (rule monofun_pair1)
apply (rule contlub_pair1)
done
lemma cont_pair2: "cont (\<lambda>y. (x, y))"
apply (rule monocontlub2cont)
apply (rule monofun_pair2)
apply (rule contlub_pair2)
done
lemma contlub_fst: "contlub fst"
apply (rule contlubI)
apply (simp add: thelub_cprod)
done
lemma contlub_snd: "contlub snd"
apply (rule contlubI)
apply (simp add: thelub_cprod)
done
lemma cont_fst: "cont fst"
apply (rule monocontlub2cont)
apply (rule monofun_fst)
apply (rule contlub_fst)
done
lemma cont_snd: "cont snd"
apply (rule monocontlub2cont)
apply (rule monofun_snd)
apply (rule contlub_snd)
done
subsection {* Continuous versions of constants *}
constdefs
cpair :: "'a \<rightarrow> 'b \<rightarrow> ('a * 'b)" (* continuous pairing *)
"cpair \<equiv> (\<Lambda> x y. (x, y))"
cfst :: "('a * 'b) \<rightarrow> 'a"
"cfst \<equiv> (\<Lambda> p. fst p)"
csnd :: "('a * 'b) \<rightarrow> 'b"
"csnd \<equiv> (\<Lambda> p. snd p)"
csplit :: "('a \<rightarrow> 'b \<rightarrow> 'c) \<rightarrow> ('a * 'b) \<rightarrow> 'c"
"csplit \<equiv> (\<Lambda> f p. f\<cdot>(cfst\<cdot>p)\<cdot>(csnd\<cdot>p))"
syntax
"_ctuple" :: "['a, args] \<Rightarrow> 'a * 'b" ("(1<_,/ _>)")
syntax (xsymbols)
"_ctuple" :: "['a, args] \<Rightarrow> 'a * 'b" ("(1\<langle>_,/ _\<rangle>)")
translations
"\<langle>x, y, z\<rangle>" == "\<langle>x, \<langle>y, z\<rangle>\<rangle>"
"\<langle>x, y\<rangle>" == "cpair\<cdot>x\<cdot>y"
translations
"\<Lambda>(cpair\<cdot>x\<cdot>y). t" == "csplit\<cdot>(\<Lambda> x y. t)"
subsection {* Convert all lemmas to the continuous versions *}
lemma cpair_eq_pair: "<x, y> = (x, y)"
by (simp add: cpair_def cont_pair1 cont_pair2)
lemma inject_cpair: "<a,b> = <aa,ba> \<Longrightarrow> a = aa \<and> b = ba"
by (simp add: cpair_eq_pair)
lemma cpair_eq [iff]: "(<a, b> = <a', b'>) = (a = a' \<and> b = b')"
by (simp add: cpair_eq_pair)
lemma cpair_less [iff]: "(<a, b> \<sqsubseteq> <a', b'>) = (a \<sqsubseteq> a' \<and> b \<sqsubseteq> b')"
by (simp add: cpair_eq_pair less_cprod_def)
lemma cpair_defined_iff [iff]: "(<x, y> = \<bottom>) = (x = \<bottom> \<and> y = \<bottom>)"
by (simp add: inst_cprod_pcpo cpair_eq_pair)
lemma cpair_strict: "<\<bottom>, \<bottom>> = \<bottom>"
by simp
lemma inst_cprod_pcpo2: "\<bottom> = <\<bottom>, \<bottom>>"
by (rule cpair_strict [symmetric])
lemma defined_cpair_rev:
"<a,b> = \<bottom> \<Longrightarrow> a = \<bottom> \<and> b = \<bottom>"
by simp
lemma Exh_Cprod2: "\<exists>a b. z = <a, b>"
by (simp add: cpair_eq_pair)
lemma cprodE: "\<lbrakk>\<And>x y. p = <x, y> \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q"
by (cut_tac Exh_Cprod2, auto)
lemma cfst_cpair [simp]: "cfst\<cdot><x, y> = x"
by (simp add: cpair_eq_pair cfst_def cont_fst)
lemma csnd_cpair [simp]: "csnd\<cdot><x, y> = y"
by (simp add: cpair_eq_pair csnd_def cont_snd)
lemma cfst_strict [simp]: "cfst\<cdot>\<bottom> = \<bottom>"
by (simp add: inst_cprod_pcpo2)
lemma csnd_strict [simp]: "csnd\<cdot>\<bottom> = \<bottom>"
by (simp add: inst_cprod_pcpo2)
lemma surjective_pairing_Cprod2: "<cfst\<cdot>p, csnd\<cdot>p> = p"
apply (unfold cfst_def csnd_def)
apply (simp add: cont_fst cont_snd cpair_eq_pair)
done
lemma less_cprod: "x \<sqsubseteq> y = (cfst\<cdot>x \<sqsubseteq> cfst\<cdot>y \<and> csnd\<cdot>x \<sqsubseteq> csnd\<cdot>y)"
by (simp add: less_cprod_def cfst_def csnd_def cont_fst cont_snd)
lemma eq_cprod: "(x = y) = (cfst\<cdot>x = cfst\<cdot>y \<and> csnd\<cdot>x = csnd\<cdot>y)"
by (auto simp add: po_eq_conv less_cprod)
lemma compact_cpair [simp]: "\<lbrakk>compact x; compact y\<rbrakk> \<Longrightarrow> compact <x, y>"
by (rule compactI, simp add: less_cprod)
lemma lub_cprod2:
"chain S \<Longrightarrow> range S <<| <\<Squnion>i. cfst\<cdot>(S i), \<Squnion>i. csnd\<cdot>(S i)>"
apply (simp add: cpair_eq_pair cfst_def csnd_def cont_fst cont_snd)
apply (erule lub_cprod)
done
lemma thelub_cprod2:
"chain S \<Longrightarrow> lub (range S) = <\<Squnion>i. cfst\<cdot>(S i), \<Squnion>i. csnd\<cdot>(S i)>"
by (rule lub_cprod2 [THEN thelubI])
lemma csplit1 [simp]: "csplit\<cdot>f\<cdot>\<bottom> = f\<cdot>\<bottom>\<cdot>\<bottom>"
by (simp add: csplit_def)
lemma csplit2 [simp]: "csplit\<cdot>f\<cdot><x,y> = f\<cdot>x\<cdot>y"
by (simp add: csplit_def)
lemma csplit3 [simp]: "csplit\<cdot>cpair\<cdot>z = z"
by (simp add: csplit_def surjective_pairing_Cprod2)
lemmas Cprod_rews = cfst_cpair csnd_cpair csplit2
end