src/ZF/AC/AC_Equiv.thy
author paulson
Mon, 23 Sep 1996 17:42:56 +0200
changeset 2003 b48f066d52dc
parent 1478 2b8c2a7547ab
child 2469 b50b8c0eec01
permissions -rw-r--r--
Addition of gensym

(*  Title:      ZF/AC/AC_Equiv.thy
    ID:         $Id$
    Author:     Krzysztof Grabczewski

Axioms AC1 -- AC19 come from "Equivalents of the Axiom of Choice, II"
by H. Rubin and J.E. Rubin, 1985.

Axiom AC0 comes from "Axiomatic Set Theory" by P. Suppes, 1972.

Some Isabelle proofs of equivalences of these axioms are formalizations of
proofs presented by the Rubins.  The others are based on the Rubins' proofs,
but slightly changed.
*)

AC_Equiv = CardinalArith + Univ + OrdQuant +

consts
  
(* Well Ordering Theorems *)
  WO1, WO2, WO3, WO5, WO6, WO7, WO8 :: o
  WO4                               :: i => o

(* Axioms of Choice *)  
  AC0, AC1, AC2, AC3, AC4, AC5, AC6, AC7, AC8, AC9,
  AC11, AC12, AC14, AC15, AC17, AC19 :: o
  AC10, AC13              :: i => o
  AC16                    :: [i, i] => o
  AC18                    :: prop       ("AC18")

(* Auxiliary definitions used in definitions *)
  pairwise_disjoint       :: i => o
  sets_of_size_between    :: [i, i, i] => o

defs

(* Well Ordering Theorems *)

  WO1_def "WO1 == ALL A. EX R. well_ord(A,R)"

  WO2_def "WO2 == ALL A. EX a. Ord(a) & A eqpoll a"

  WO3_def "WO3 == ALL A. EX a. Ord(a) & (EX b. b <= a & A eqpoll b)"

  WO4_def "WO4(m) == ALL A. EX a f. Ord(a) & domain(f)=a &   
                     (UN b<a. f`b) = A & (ALL b<a. f`b lepoll m)"

  WO5_def "WO5 == EX m:nat. 1 le m & WO4(m)"

  WO6_def "WO6 == ALL A. EX m:nat. 1 le m & (EX a f. Ord(a) & domain(f)=a   
                    & (UN b<a. f`b) = A & (ALL b<a. f`b lepoll m))"

  WO7_def "WO7 == ALL A. Finite(A) <-> (ALL R. well_ord(A,R) -->   
                    well_ord(A,converse(R)))"

  WO8_def "WO8 == ALL A. (EX f. f : (PROD X:A. X)) -->  
                    (EX R. well_ord(A,R))"

(* Axioms of Choice *)  

  AC0_def "AC0 == ALL A. EX f. f:(PROD X:Pow(A)-{0}. X)"

  AC1_def "AC1 == ALL A. 0~:A --> (EX f. f:(PROD X:A. X))"

  AC2_def "AC2 == ALL A. 0~:A & pairwise_disjoint(A)   
                    --> (EX C. ALL B:A. EX y. B Int C = {y})"

  AC3_def "AC3 == ALL A B. ALL f:A->B. EX g. g:(PROD x:{a:A. f`a~=0}. f`x)"

  AC4_def "AC4 == ALL R A B. (R<=A*B --> (EX f. f:(PROD x:domain(R). R``{x})))"

  AC5_def "AC5 == ALL A B. ALL f:A->B. EX g:range(f)->A.   
                    ALL x:domain(g). f`(g`x) = x"

  AC6_def "AC6 == ALL A. 0~:A --> (PROD B:A. B)~=0"

  AC7_def "AC7 == ALL A. 0~:A & (ALL B1:A. ALL B2:A. B1 eqpoll B2)   
                    --> (PROD B:A. B)~=0"

  AC8_def "AC8 == ALL A. (ALL B:A. EX B1 B2. B=<B1,B2> & B1 eqpoll B2)   
                    --> (EX f. ALL B:A. f`B : bij(fst(B),snd(B)))"

  AC9_def "AC9 == ALL A. (ALL B1:A. ALL B2:A. B1 eqpoll B2) -->   
                    (EX f. ALL B1:A. ALL B2:A. f`<B1,B2> : bij(B1,B2))"

  AC10_def "AC10(n) ==  ALL A. (ALL B:A. ~Finite(B)) -->   
                    (EX f. ALL B:A. (pairwise_disjoint(f`B) &   
                    sets_of_size_between(f`B, 2, succ(n)) & Union(f`B)=B))"

  AC11_def "AC11 == EX n:nat. 1 le n & AC10(n)"

  AC12_def "AC12 == ALL A. (ALL B:A. ~Finite(B)) -->   
            (EX n:nat. 1 le n & (EX f. ALL B:A. (pairwise_disjoint(f`B) &   
            sets_of_size_between(f`B, 2, succ(n)) & Union(f`B)=B)))"

  AC13_def "AC13(m) == ALL A. 0~:A --> (EX f. ALL B:A. f`B~=0 &   
                                          f`B <= B & f`B lepoll m)"

  AC14_def "AC14 == EX m:nat. 1 le m & AC13(m)"

  AC15_def "AC15 == ALL A. 0~:A --> (EX m:nat. 1 le m & (EX f. ALL B:A.   
                                      f`B~=0 & f`B <= B & f`B lepoll m))"

  AC16_def "AC16(n, k)  == ALL A. ~Finite(A) -->   
            (EX T. T <= {X:Pow(A). X eqpoll succ(n)} &   
            (ALL X:{X:Pow(A). X eqpoll succ(k)}. EX! Y. Y:T & X <= Y))"

  AC17_def "AC17 == ALL A. ALL g: (Pow(A)-{0} -> A) -> Pow(A)-{0}.   
                    EX f: Pow(A)-{0} -> A. f`(g`f) : g`f"

  AC18_def "AC18 == (!!X A B. A~=0 & (ALL a:A. B(a) ~= 0) -->   
                 ((INT a:A. UN b:B(a). X(a,b)) =   
                 (UN f: PROD a:A. B(a). INT a:A. X(a, f`a))))"

  AC19_def "AC19 == ALL A. A~=0 & 0~:A --> ((INT a:A. UN b:a. b) =   
                    (UN f:(PROD B:A. B). INT a:A. f`a))"

(* Auxiliary definitions used in the above definitions *)

  pairwise_disjoint_def    "pairwise_disjoint(A)   
                            == ALL A1:A. ALL A2:A. A1 Int A2 ~= 0 --> A1=A2"

  sets_of_size_between_def "sets_of_size_between(A,m,n)   
                            == ALL B:A. m lepoll B & B lepoll n"
  
end