src/HOL/Matrix/cplex/MatrixLP.ML
author wenzelm
Tue, 11 Jul 2006 12:17:08 +0200
changeset 20083 717b1eb434f1
parent 19404 9bf2cdc9e8e8
child 20485 3078fd2eec7b
permissions -rw-r--r--
removed obsolete mem_ix;

(*  Title:      HOL/Matrix/cplex/MatrixLP.ML
    ID:         $Id$
    Author:     Steven Obua
*)

signature MATRIX_LP = 
sig
  val lp_dual_estimate_prt : string -> int -> thm 
  val lp_dual_estimate_prt_primitive : cterm * (cterm * cterm) * (cterm * cterm) * cterm * (cterm * cterm) -> thm
  val matrix_compute : cterm -> thm
  val matrix_simplify : thm -> thm
  val prove_bound : string -> int -> thm
  val float2real : string * string -> Real.real
end

structure MatrixLP : MATRIX_LP =
struct

val sg = sign_of (theory "MatrixLP")

fun inst_real thm = standard (Thm.instantiate ([(ctyp_of sg (TVar (hd (term_tvars (prop_of thm)))),
						 ctyp_of sg HOLogic.realT)], []) thm)

fun lp_dual_estimate_prt_primitive (y, (A1, A2), (c1, c2), b, (r1, r2)) = 
    let
	val th = inst_real (thm "SparseMatrix.spm_mult_le_dual_prts_no_let")
	fun var s x = (cterm_of sg (Var ((s,0), FloatSparseMatrixBuilder.real_spmatT)), x)
	val th = Thm.instantiate ([], [var "A1" A1, var "A2" A2, var "y" y, var "c1" c1, var "c2" c2, 
				       var "r1" r1, var "r2" r2, var "b" b]) th
    in
	th
    end

fun lp_dual_estimate_prt lptfile prec = 
    let
	val certificate = 
	    let
		open fspmlp
		val l = load lptfile prec false
	    in
		(y l, A l, c l, b l, r12 l)
	    end		
    in
	lp_dual_estimate_prt_primitive certificate
    end
	 
fun read_ct s = read_cterm sg (s, TypeInfer.logicT);
    
fun is_meta_eq th =
    let
	fun check ((Const ("==", _)) $ _ $ _) = true
	  | check _ = false
    in
	check (concl_of th)
    end
    
fun prep ths = (Library.filter is_meta_eq ths) @ (map (standard o mk_meta_eq) (Library.filter (not o is_meta_eq) ths))

fun make ths = Compute.basic_make sg ths
	  
fun inst_tvar ty thm = 
    let
	val ord = prod_ord (prod_ord string_ord int_ord) (list_ord string_ord)
	val v = TVar (hd (sort ord (term_tvars (prop_of thm))))
    in	
	standard (Thm.instantiate ([(ctyp_of sg v, ctyp_of sg ty)], []) thm)
    end
    
fun inst_tvars [] thms = thms
  | inst_tvars (ty::tys) thms = inst_tvars tys (map (inst_tvar ty) thms)
				
val matrix_compute =
    let 
	val spvecT = FloatSparseMatrixBuilder.real_spvecT
	val spmatT = FloatSparseMatrixBuilder.real_spmatT
	val spvecT_elem = HOLogic.mk_prodT (HOLogic.natT, HOLogic.realT)
	val spmatT_elem = HOLogic.mk_prodT (HOLogic.natT, spvecT)
	val case_compute = map thm ["list_case_compute", "list_case_compute_empty", "list_case_compute_cons"]
	val ths = 
	    prep (
	    (inst_tvars [HOLogic.intT, HOLogic.natT] (thms "Let_compute")) 
	    @ (inst_tvars [HOLogic.intT, HOLogic.intT] (thms "Let_compute"))
	    @ (map (fn t => inst_tvar t (thm "If_True")) [HOLogic.intT, HOLogic.natT, HOLogic.realT, spvecT, spmatT, HOLogic.boolT])
	    @ (map (fn t => inst_tvar t (thm "If_False")) [HOLogic.intT, HOLogic.natT, HOLogic.realT, spvecT, spmatT, HOLogic.boolT])
	    @ (thms "MatrixLP.float_arith")
	    @ (map (inst_tvar HOLogic.realT) (thms "MatrixLP.sparse_row_matrix_arith_simps"))
	    @ (thms "MatrixLP.boolarith")
	    @ (inst_tvars [HOLogic.natT, HOLogic.realT] [thm "fst_compute", thm "snd_compute"])
	    @ (inst_tvars [HOLogic.natT, FloatSparseMatrixBuilder.real_spvecT] [thm "fst_compute", thm "snd_compute"])
	    @ (inst_tvars [HOLogic.boolT, spmatT_elem] case_compute)
	    @ (inst_tvars [HOLogic.boolT, spvecT_elem] case_compute)
	    @ (inst_tvars [HOLogic.boolT, HOLogic.realT] case_compute)
	    @ (inst_tvars [spvecT] (thms "MatrixLP.sorted_sp_simps"))
	    @ (inst_tvars [HOLogic.realT] (thms "MatrixLP.sorted_sp_simps"))
	    @ [thm "zero_eq_Numeral0_nat", thm "one_eq_Numeral1_nat"]
	    @ (inst_tvars [HOLogic.intT] [thm "zero_eq_Numeral0_nring", thm "one_eq_Numeral1_nring"])
	    @ (inst_tvars [HOLogic.realT] [thm "zero_eq_Numeral0_nring", thm "one_eq_Numeral1_nring"]))
	    
	val c = make ths
    in
	Compute.rewrite c
    end

fun matrix_simplify th = 
    let
	val simp_th = matrix_compute (cprop_of th)
	val th = strip_shyps (equal_elim simp_th th)
	fun removeTrue th = removeTrue (implies_elim th TrueI) handle _ => th
    in
	removeTrue th
    end

fun prove_bound lptfile prec = 
    let
	val th = lp_dual_estimate_prt lptfile prec
    in
	matrix_simplify th
    end

fun realFromStr s = valOf (Real.fromString s)
fun float2real (x,y) = (realFromStr x) * (Math.pow (2.0, realFromStr y))

end