(* Title: HOL/Matrix/cplex/MatrixLP.ML
ID: $Id$
Author: Steven Obua
*)
signature MATRIX_LP =
sig
val lp_dual_estimate_prt : string -> int -> thm
val lp_dual_estimate_prt_primitive : cterm * (cterm * cterm) * (cterm * cterm) * cterm * (cterm * cterm) -> thm
val matrix_compute : cterm -> thm
val matrix_simplify : thm -> thm
val prove_bound : string -> int -> thm
val float2real : string * string -> Real.real
end
structure MatrixLP : MATRIX_LP =
struct
val sg = sign_of (theory "MatrixLP")
fun inst_real thm = standard (Thm.instantiate ([(ctyp_of sg (TVar (hd (term_tvars (prop_of thm)))),
ctyp_of sg HOLogic.realT)], []) thm)
fun lp_dual_estimate_prt_primitive (y, (A1, A2), (c1, c2), b, (r1, r2)) =
let
val th = inst_real (thm "SparseMatrix.spm_mult_le_dual_prts_no_let")
fun var s x = (cterm_of sg (Var ((s,0), FloatSparseMatrixBuilder.real_spmatT)), x)
val th = Thm.instantiate ([], [var "A1" A1, var "A2" A2, var "y" y, var "c1" c1, var "c2" c2,
var "r1" r1, var "r2" r2, var "b" b]) th
in
th
end
fun lp_dual_estimate_prt lptfile prec =
let
val certificate =
let
open fspmlp
val l = load lptfile prec false
in
(y l, A l, c l, b l, r12 l)
end
in
lp_dual_estimate_prt_primitive certificate
end
fun read_ct s = read_cterm sg (s, TypeInfer.logicT);
fun is_meta_eq th =
let
fun check ((Const ("==", _)) $ _ $ _) = true
| check _ = false
in
check (concl_of th)
end
fun prep ths = (Library.filter is_meta_eq ths) @ (map (standard o mk_meta_eq) (Library.filter (not o is_meta_eq) ths))
fun make ths = Compute.basic_make sg ths
fun inst_tvar ty thm =
let
val ord = prod_ord (prod_ord string_ord int_ord) (list_ord string_ord)
val v = TVar (hd (sort ord (term_tvars (prop_of thm))))
in
standard (Thm.instantiate ([(ctyp_of sg v, ctyp_of sg ty)], []) thm)
end
fun inst_tvars [] thms = thms
| inst_tvars (ty::tys) thms = inst_tvars tys (map (inst_tvar ty) thms)
val matrix_compute =
let
val spvecT = FloatSparseMatrixBuilder.real_spvecT
val spmatT = FloatSparseMatrixBuilder.real_spmatT
val spvecT_elem = HOLogic.mk_prodT (HOLogic.natT, HOLogic.realT)
val spmatT_elem = HOLogic.mk_prodT (HOLogic.natT, spvecT)
val case_compute = map thm ["list_case_compute", "list_case_compute_empty", "list_case_compute_cons"]
val ths =
prep (
(inst_tvars [HOLogic.intT, HOLogic.natT] (thms "Let_compute"))
@ (inst_tvars [HOLogic.intT, HOLogic.intT] (thms "Let_compute"))
@ (map (fn t => inst_tvar t (thm "If_True")) [HOLogic.intT, HOLogic.natT, HOLogic.realT, spvecT, spmatT, HOLogic.boolT])
@ (map (fn t => inst_tvar t (thm "If_False")) [HOLogic.intT, HOLogic.natT, HOLogic.realT, spvecT, spmatT, HOLogic.boolT])
@ (thms "MatrixLP.float_arith")
@ (map (inst_tvar HOLogic.realT) (thms "MatrixLP.sparse_row_matrix_arith_simps"))
@ (thms "MatrixLP.boolarith")
@ (inst_tvars [HOLogic.natT, HOLogic.realT] [thm "fst_compute", thm "snd_compute"])
@ (inst_tvars [HOLogic.natT, FloatSparseMatrixBuilder.real_spvecT] [thm "fst_compute", thm "snd_compute"])
@ (inst_tvars [HOLogic.boolT, spmatT_elem] case_compute)
@ (inst_tvars [HOLogic.boolT, spvecT_elem] case_compute)
@ (inst_tvars [HOLogic.boolT, HOLogic.realT] case_compute)
@ (inst_tvars [spvecT] (thms "MatrixLP.sorted_sp_simps"))
@ (inst_tvars [HOLogic.realT] (thms "MatrixLP.sorted_sp_simps"))
@ [thm "zero_eq_Numeral0_nat", thm "one_eq_Numeral1_nat"]
@ (inst_tvars [HOLogic.intT] [thm "zero_eq_Numeral0_nring", thm "one_eq_Numeral1_nring"])
@ (inst_tvars [HOLogic.realT] [thm "zero_eq_Numeral0_nring", thm "one_eq_Numeral1_nring"]))
val c = make ths
in
Compute.rewrite c
end
fun matrix_simplify th =
let
val simp_th = matrix_compute (cprop_of th)
val th = strip_shyps (equal_elim simp_th th)
fun removeTrue th = removeTrue (implies_elim th TrueI) handle _ => th
in
removeTrue th
end
fun prove_bound lptfile prec =
let
val th = lp_dual_estimate_prt lptfile prec
in
matrix_simplify th
end
fun realFromStr s = valOf (Real.fromString s)
fun float2real (x,y) = (realFromStr x) * (Math.pow (2.0, realFromStr y))
end