(*
ID: $Id$
Author: Amine Chaieb, TU Muenchen
Ferrante and Rackoff Algorithm.
*)
structure Ferrante_Rackoff:
sig
val trace : bool ref
val ferrack_tac : bool -> int -> tactic
val setup : theory -> theory
end =
struct
val trace = ref false;
fun trace_msg s = if !trace then tracing s else ();
val context_ss = simpset_of (the_context ());
val nT = HOLogic.natT;
val binarith = map thm
["Pls_0_eq", "Min_1_eq",
"bin_pred_Pls","bin_pred_Min","bin_pred_1","bin_pred_0",
"bin_succ_Pls", "bin_succ_Min", "bin_succ_1", "bin_succ_0",
"bin_add_Pls", "bin_add_Min", "bin_add_BIT_0", "bin_add_BIT_10",
"bin_add_BIT_11", "bin_minus_Pls", "bin_minus_Min", "bin_minus_1",
"bin_minus_0", "bin_mult_Pls", "bin_mult_Min", "bin_mult_1", "bin_mult_0",
"bin_add_Pls_right", "bin_add_Min_right"];
val intarithrel =
(map thm ["int_eq_number_of_eq","int_neg_number_of_BIT",
"int_le_number_of_eq","int_iszero_number_of_0",
"int_less_number_of_eq_neg"]) @
(map (fn s => thm s RS thm "lift_bool")
["int_iszero_number_of_Pls","int_iszero_number_of_1",
"int_neg_number_of_Min"])@
(map (fn s => thm s RS thm "nlift_bool")
["int_nonzero_number_of_Min","int_not_neg_number_of_Pls"]);
val intarith = map thm ["int_number_of_add_sym", "int_number_of_minus_sym",
"int_number_of_diff_sym", "int_number_of_mult_sym"];
val natarith = map thm ["add_nat_number_of", "diff_nat_number_of",
"mult_nat_number_of", "eq_nat_number_of",
"less_nat_number_of"]
val powerarith =
(map thm ["nat_number_of", "zpower_number_of_even",
"zpower_Pls", "zpower_Min"]) @
[(Tactic.simplify true [thm "zero_eq_Numeral0_nring",
thm "one_eq_Numeral1_nring"]
(thm "zpower_number_of_odd"))]
val comp_arith = binarith @ intarith @ intarithrel @ natarith
@ powerarith @[thm"not_false_eq_true", thm "not_true_eq_false"];
fun prepare_for_linr sg q fm =
let
val ps = Logic.strip_params fm
val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm)
val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm)
fun mk_all ((s, T), (P,n)) =
if 0 mem loose_bnos P then
(HOLogic.all_const T $ Abs (s, T, P), n)
else (incr_boundvars ~1 P, n-1)
fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t;
val rhs = hs
(* val (rhs,irhs) = List.partition (relevant (rev ps)) hs *)
val np = length ps
val (fm',np) = foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n)))
(foldr HOLogic.mk_imp c rhs, np) ps
val (vs, _) = List.partition (fn t => q orelse (type_of t) = nT)
(term_frees fm' @ term_vars fm');
val fm2 = foldr mk_all2 fm' vs
in (fm2, np + length vs, length rhs) end;
(*Object quantifier to meta --*)
fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ;
(* object implication to meta---*)
fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp;
fun ferrack_tac q i =
(ObjectLogic.atomize_tac i)
THEN (REPEAT_DETERM (split_tac [split_min, split_max,abs_split] i))
THEN (fn st =>
let
val g = List.nth (prems_of st, i - 1)
val sg = sign_of_thm st
(* Transform the term*)
val (t,np,nh) = prepare_for_linr sg q g
(* Some simpsets for dealing with mod div abs and nat*)
val simpset0 = HOL_basic_ss addsimps comp_arith addsplits [split_min, split_max]
(* simp rules for elimination of abs *)
val simpset3 = HOL_basic_ss addsplits [abs_split]
val ct = cterm_of sg (HOLogic.mk_Trueprop t)
(* Theorem for the nat --> int transformation *)
val pre_thm = Seq.hd (EVERY
[simp_tac simpset0 1, TRY (simp_tac context_ss 1)]
(trivial ct))
fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i)
(* The result of the quantifier elimination *)
val (th, tac) = case (prop_of pre_thm) of
Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ =>
let val pth = Ferrante_Rackoff_Proof.qelim (cterm_of sg (Pattern.eta_long [] t1))
in
(trace_msg ("calling procedure with term:\n" ^
Sign.string_of_term sg t1);
((pth RS iffD2) RS pre_thm,
assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i)))
end
| _ => (pre_thm, assm_tac i)
in (rtac (((mp_step nh) o (spec_step np)) th) i
THEN tac) st
end handle Subscript => no_tac st | Ferrante_Rackoff_Proof.FAILURE _ => no_tac st);
fun ferrack_args meth =
let val parse_flag =
Args.$$$ "no_quantify" >> (K (K false));
in
Method.simple_args
(Scan.optional (Args.$$$ "(" |-- Scan.repeat1 parse_flag --| Args.$$$ ")") [] >>
curry (Library.foldl op |>) true)
(fn q => fn _ => meth q 1)
end;
val setup =
Method.add_method ("ferrack",
ferrack_args (Method.SIMPLE_METHOD oo ferrack_tac),
"LCF-proof-producing decision procedure for linear real arithmetic");
end