(*  Title: 	LCF/lcf.thy
    ID:         $Id$
    Author: 	Tobias Nipkow
    Copyright   1992  University of Cambridge
Natural Deduction Rules for LCF
*)
LCF = FOL +
classes cpo < term
default cpo
types
 tr
 void
 ('a,'b) "*"		(infixl 6)
 ('a,'b) "+"		(infixl 5)
arities
 fun, "*", "+" :: (cpo,cpo)cpo
 tr,void       :: cpo
consts
 UU	:: "'a"
 TT,FF	:: "tr"
 FIX	:: "('a => 'a) => 'a"
 FST	:: "'a*'b => 'a"
 SND	:: "'a*'b => 'b"
 INL    :: "'a => 'a+'b"
 INR    :: "'b => 'a+'b"
 WHEN   :: "['a=>'c, 'b=>'c, 'a+'b] => 'c"
 adm	:: "('a => o) => o"
 VOID	:: "void"		("()")
 PAIR	:: "['a,'b] => 'a*'b"	("(1<_,/_>)" [0,0] 100)
 COND	:: "[tr,'a,'a] => 'a"	("(_ =>/ (_ |/ _))" [60,60,60] 60)
 "<<"	:: "['a,'a] => o"	(infixl 50)
rules
  (** DOMAIN THEORY **)
  eq_def	"x=y == x << y & y << x"
  less_trans	"[| x << y; y << z |] ==> x << z"
  less_ext	"(ALL x. f(x) << g(x)) ==> f << g"
  mono		"[| f << g; x << y |] ==> f(x) << g(y)"
  minimal	"UU << x"
  FIX_eq	"f(FIX(f)) = FIX(f)"
  (** TR **)
  tr_cases	"p=UU | p=TT | p=FF"
  not_TT_less_FF "~ TT << FF"
  not_FF_less_TT "~ FF << TT"
  not_TT_less_UU "~ TT << UU"
  not_FF_less_UU "~ FF << UU"
  COND_UU	"UU => x | y  =  UU"
  COND_TT	"TT => x | y  =  x"
  COND_FF	"FF => x | y  =  y"
  (** PAIRS **)
  surj_pairing	"<FST(z),SND(z)> = z"
  FST	"FST(<x,y>) = x"
  SND	"SND(<x,y>) = y"
  (*** STRICT SUM ***)
  INL_DEF "~x=UU ==> ~INL(x)=UU"
  INR_DEF "~x=UU ==> ~INR(x)=UU"
  INL_STRICT "INL(UU) = UU"
  INR_STRICT "INR(UU) = UU"
  WHEN_UU  "WHEN(f,g,UU) = UU"
  WHEN_INL "~x=UU ==> WHEN(f,g,INL(x)) = f(x)"
  WHEN_INR "~x=UU ==> WHEN(f,g,INR(x)) = g(x)"
  SUM_EXHAUSTION
    "z = UU | (EX x. ~x=UU & z = INL(x)) | (EX y. ~y=UU & z = INR(y))"
  (** VOID **)
  void_cases	"(x::void) = UU"
  (** INDUCTION **)
  induct	"[| adm(P); P(UU); ALL x. P(x) --> P(f(x)) |] ==> P(FIX(f))"
  (** Admissibility / Chain Completeness **)
  (* All rules can be found on pages 199--200 of Larry's LCF book.
     Note that "easiness" of types is not taken into account
     because it cannot be expressed schematically; flatness could be. *)
  adm_less	"adm(%x.t(x) << u(x))"
  adm_not_less	"adm(%x.~ t(x) << u)"
  adm_not_free  "adm(%x.A)"
  adm_subst	"adm(P) ==> adm(%x.P(t(x)))"
  adm_conj	"[| adm(P); adm(Q) |] ==> adm(%x.P(x)&Q(x))"
  adm_disj	"[| adm(P); adm(Q) |] ==> adm(%x.P(x)|Q(x))"
  adm_imp	"[| adm(%x.~P(x)); adm(Q) |] ==> adm(%x.P(x)-->Q(x))"
  adm_all	"(!!y.adm(P(y))) ==> adm(%x.ALL y.P(y,x))"
end