Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
of premises of congruence rules.
(* Title: HOL/IMP/Examples.thy
ID: $Id$
Author: David von Oheimb, TUM
Copyright 2000 TUM
*)
header "Examples"
theory Examples imports Natural begin
constdefs
factorial :: "loc => loc => com"
"factorial a b == b :== (%s. 1);
\<WHILE> (%s. s a ~= 0) \<DO>
(b :== (%s. s b * s a); a :== (%s. s a - 1))"
declare update_def [simp]
subsection "An example due to Tony Hoare"
lemma lemma1 [rule_format (no_asm)]:
"[| !x. P x \<longrightarrow> Q x; \<langle>w,s\<rangle> \<longrightarrow>\<^sub>c t |] ==>
!c. w = While P c \<longrightarrow> \<langle>While Q c,t\<rangle> \<longrightarrow>\<^sub>c u \<longrightarrow> \<langle>While Q c,s\<rangle> \<longrightarrow>\<^sub>c u"
apply (erule evalc.induct)
apply auto
done
lemma lemma2 [rule_format (no_asm)]:
"[| !x. P x \<longrightarrow> Q x; \<langle>w,s\<rangle> \<longrightarrow>\<^sub>c u |] ==>
!c. w = While Q c \<longrightarrow> \<langle>While P c; While Q c,s\<rangle> \<longrightarrow>\<^sub>c u"
apply (erule evalc.induct)
apply (simp_all (no_asm_simp))
apply blast
apply (case_tac "P s")
apply auto
done
lemma Hoare_example: "!x. P x \<longrightarrow> Q x ==>
(\<langle>While P c; While Q c, s\<rangle> \<longrightarrow>\<^sub>c t) = (\<langle>While Q c, s\<rangle> \<longrightarrow>\<^sub>c t)"
by (blast intro: lemma1 lemma2 dest: semi [THEN iffD1])
subsection "Factorial"
lemma factorial_3: "a~=b ==>
\<langle>factorial a b, Mem(a:=3)\<rangle> \<longrightarrow>\<^sub>c Mem(b:=6, a:=0)"
apply (unfold factorial_def)
apply simp
done
text {* the same in single step mode: *}
lemmas [simp del] = evalc_cases
lemma "a~=b \<Longrightarrow> \<langle>factorial a b, Mem(a:=3)\<rangle> \<longrightarrow>\<^sub>c Mem(b:=6, a:=0)"
apply (unfold factorial_def)
apply (frule not_sym)
apply (rule evalc.intros)
apply (rule evalc.intros)
apply simp
apply (rule evalc.intros)
apply simp
apply (rule evalc.intros)
apply (rule evalc.intros)
apply simp
apply (rule evalc.intros)
apply simp
apply (rule evalc.intros)
apply simp
apply (rule evalc.intros)
apply (rule evalc.intros)
apply simp
apply (rule evalc.intros)
apply simp
apply (rule evalc.intros)
apply simp
apply (rule evalc.intros)
apply (rule evalc.intros)
apply simp
apply (rule evalc.intros)
apply simp
apply (rule evalc.intros)
apply simp
done
end