Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
of premises of congruence rules.
(* Title: HOL/Library/Continuity.thy
ID: $Id$
Author: David von Oheimb, TU Muenchen
*)
header {* Continuity and iterations (of set transformers) *}
theory Continuity
imports Main
begin
subsection "Chains"
constdefs
up_chain :: "(nat => 'a set) => bool"
"up_chain F == \<forall>i. F i \<subseteq> F (Suc i)"
lemma up_chainI: "(!!i. F i \<subseteq> F (Suc i)) ==> up_chain F"
by (simp add: up_chain_def)
lemma up_chainD: "up_chain F ==> F i \<subseteq> F (Suc i)"
by (simp add: up_chain_def)
lemma up_chain_less_mono [rule_format]:
"up_chain F ==> x < y --> F x \<subseteq> F y"
apply (induct_tac y)
apply (blast dest: up_chainD elim: less_SucE)+
done
lemma up_chain_mono: "up_chain F ==> x \<le> y ==> F x \<subseteq> F y"
apply (drule le_imp_less_or_eq)
apply (blast dest: up_chain_less_mono)
done
constdefs
down_chain :: "(nat => 'a set) => bool"
"down_chain F == \<forall>i. F (Suc i) \<subseteq> F i"
lemma down_chainI: "(!!i. F (Suc i) \<subseteq> F i) ==> down_chain F"
by (simp add: down_chain_def)
lemma down_chainD: "down_chain F ==> F (Suc i) \<subseteq> F i"
by (simp add: down_chain_def)
lemma down_chain_less_mono [rule_format]:
"down_chain F ==> x < y --> F y \<subseteq> F x"
apply (induct_tac y)
apply (blast dest: down_chainD elim: less_SucE)+
done
lemma down_chain_mono: "down_chain F ==> x \<le> y ==> F y \<subseteq> F x"
apply (drule le_imp_less_or_eq)
apply (blast dest: down_chain_less_mono)
done
subsection "Continuity"
constdefs
up_cont :: "('a set => 'a set) => bool"
"up_cont f == \<forall>F. up_chain F --> f (\<Union>(range F)) = \<Union>(f ` range F)"
lemma up_contI:
"(!!F. up_chain F ==> f (\<Union>(range F)) = \<Union>(f ` range F)) ==> up_cont f"
apply (unfold up_cont_def)
apply blast
done
lemma up_contD:
"up_cont f ==> up_chain F ==> f (\<Union>(range F)) = \<Union>(f ` range F)"
apply (unfold up_cont_def)
apply auto
done
lemma up_cont_mono: "up_cont f ==> mono f"
apply (rule monoI)
apply (drule_tac F = "\<lambda>i. if i = 0 then A else B" in up_contD)
apply (rule up_chainI)
apply simp+
apply (drule Un_absorb1)
apply (auto simp add: nat_not_singleton)
done
constdefs
down_cont :: "('a set => 'a set) => bool"
"down_cont f ==
\<forall>F. down_chain F --> f (Inter (range F)) = Inter (f ` range F)"
lemma down_contI:
"(!!F. down_chain F ==> f (Inter (range F)) = Inter (f ` range F)) ==>
down_cont f"
apply (unfold down_cont_def)
apply blast
done
lemma down_contD: "down_cont f ==> down_chain F ==>
f (Inter (range F)) = Inter (f ` range F)"
apply (unfold down_cont_def)
apply auto
done
lemma down_cont_mono: "down_cont f ==> mono f"
apply (rule monoI)
apply (drule_tac F = "\<lambda>i. if i = 0 then B else A" in down_contD)
apply (rule down_chainI)
apply simp+
apply (drule Int_absorb1)
apply (auto simp add: nat_not_singleton)
done
subsection "Iteration"
constdefs
up_iterate :: "('a set => 'a set) => nat => 'a set"
"up_iterate f n == (f^n) {}"
lemma up_iterate_0 [simp]: "up_iterate f 0 = {}"
by (simp add: up_iterate_def)
lemma up_iterate_Suc [simp]: "up_iterate f (Suc i) = f (up_iterate f i)"
by (simp add: up_iterate_def)
lemma up_iterate_chain: "mono F ==> up_chain (up_iterate F)"
apply (rule up_chainI)
apply (induct_tac i)
apply simp+
apply (erule (1) monoD)
done
lemma UNION_up_iterate_is_fp:
"up_cont F ==>
F (UNION UNIV (up_iterate F)) = UNION UNIV (up_iterate F)"
apply (frule up_cont_mono [THEN up_iterate_chain])
apply (drule (1) up_contD)
apply simp
apply (auto simp del: up_iterate_Suc simp add: up_iterate_Suc [symmetric])
apply (case_tac xa)
apply auto
done
lemma UNION_up_iterate_lowerbound:
"mono F ==> F P = P ==> UNION UNIV (up_iterate F) \<subseteq> P"
apply (subgoal_tac "(!!i. up_iterate F i \<subseteq> P)")
apply fast
apply (induct_tac i)
prefer 2 apply (drule (1) monoD)
apply auto
done
lemma UNION_up_iterate_is_lfp:
"up_cont F ==> lfp F = UNION UNIV (up_iterate F)"
apply (rule set_eq_subset [THEN iffD2])
apply (rule conjI)
prefer 2
apply (drule up_cont_mono)
apply (rule UNION_up_iterate_lowerbound)
apply assumption
apply (erule lfp_unfold [symmetric])
apply (rule lfp_lowerbound)
apply (rule set_eq_subset [THEN iffD1, THEN conjunct2])
apply (erule UNION_up_iterate_is_fp [symmetric])
done
constdefs
down_iterate :: "('a set => 'a set) => nat => 'a set"
"down_iterate f n == (f^n) UNIV"
lemma down_iterate_0 [simp]: "down_iterate f 0 = UNIV"
by (simp add: down_iterate_def)
lemma down_iterate_Suc [simp]:
"down_iterate f (Suc i) = f (down_iterate f i)"
by (simp add: down_iterate_def)
lemma down_iterate_chain: "mono F ==> down_chain (down_iterate F)"
apply (rule down_chainI)
apply (induct_tac i)
apply simp+
apply (erule (1) monoD)
done
lemma INTER_down_iterate_is_fp:
"down_cont F ==>
F (INTER UNIV (down_iterate F)) = INTER UNIV (down_iterate F)"
apply (frule down_cont_mono [THEN down_iterate_chain])
apply (drule (1) down_contD)
apply simp
apply (auto simp del: down_iterate_Suc simp add: down_iterate_Suc [symmetric])
apply (case_tac xa)
apply auto
done
lemma INTER_down_iterate_upperbound:
"mono F ==> F P = P ==> P \<subseteq> INTER UNIV (down_iterate F)"
apply (subgoal_tac "(!!i. P \<subseteq> down_iterate F i)")
apply fast
apply (induct_tac i)
prefer 2 apply (drule (1) monoD)
apply auto
done
lemma INTER_down_iterate_is_gfp:
"down_cont F ==> gfp F = INTER UNIV (down_iterate F)"
apply (rule set_eq_subset [THEN iffD2])
apply (rule conjI)
apply (drule down_cont_mono)
apply (rule INTER_down_iterate_upperbound)
apply assumption
apply (erule gfp_unfold [symmetric])
apply (rule gfp_upperbound)
apply (rule set_eq_subset [THEN iffD1, THEN conjunct2])
apply (erule INTER_down_iterate_is_fp)
done
end