(* Title: Pure/pure_thy.ML
ID: $Id$
Author: Markus Wenzel, TU Muenchen
Theorem storage. The ProtoPure theory.
*)
signature BASIC_PURE_THY =
sig
datatype interval = FromTo of int * int | From of int | Single of int
datatype thmref = Name of string | NameSelection of string * interval list
val print_theorems: theory -> unit
val print_theory: theory -> unit
val get_thm: theory -> thmref -> thm
val get_thms: theory -> thmref -> thm list
val get_thmss: theory -> thmref list -> thm list
structure ProtoPure:
sig
val thy: theory
val Goal_def: thm
end
end;
signature PURE_THY =
sig
include BASIC_PURE_THY
val string_of_thmref: thmref -> string
val theorem_space: theory -> NameSpace.T
val print_theorems_diff: theory -> theory -> unit
val get_thm_closure: theory -> thmref -> thm
val get_thms_closure: theory -> thmref -> thm list
val single_thm: string -> thm list -> thm
val name_of_thmref: thmref -> string
val map_name_of_thmref: (string -> string) -> thmref -> thmref
val select_thm: thmref -> thm list -> thm list
val selections: string * thm list -> (thmref * thm) list
val fact_index_of: theory -> FactIndex.T
val valid_thms: theory -> thmref * thm list -> bool
val thms_containing: theory -> FactIndex.spec -> (string * thm list) list
val thms_containing_consts: theory -> string list -> (string * thm) list
val thms_of: theory -> (string * thm) list
val all_thms_of: theory -> (string * thm) list
val hide_thms: bool -> string list -> theory -> theory
val store_thm: (bstring * thm) * theory attribute list -> theory -> theory * thm
val smart_store_thms: (bstring * thm list) -> thm list
val smart_store_thms_open: (bstring * thm list) -> thm list
val forall_elim_var: int -> thm -> thm
val forall_elim_vars: int -> thm -> thm
val add_thms: ((bstring * thm) * theory attribute list) list -> theory -> theory * thm list
val add_thmss: ((bstring * thm list) * theory attribute list) list -> theory
-> theory * thm list list
val note_thmss: theory attribute -> ((bstring * theory attribute list) *
(thmref * theory attribute list) list) list ->
theory -> theory * (bstring * thm list) list
val note_thmss_i: theory attribute -> ((bstring * theory attribute list) *
(thm list * theory attribute list) list) list ->
theory -> theory * (bstring * thm list) list
val add_axioms: ((bstring * string) * theory attribute list) list ->
theory -> theory * thm list
val add_axioms_i: ((bstring * term) * theory attribute list) list ->
theory -> theory * thm list
val add_axiomss: ((bstring * string list) * theory attribute list) list ->
theory -> theory * thm list list
val add_axiomss_i: ((bstring * term list) * theory attribute list) list ->
theory -> theory * thm list list
val add_defs: bool -> ((bstring * string) * theory attribute list) list ->
theory -> theory * thm list
val add_defs_i: bool -> ((bstring * term) * theory attribute list) list ->
theory -> theory * thm list
val add_defss: bool -> ((bstring * string list) * theory attribute list) list ->
theory -> theory * thm list list
val add_defss_i: bool -> ((bstring * term list) * theory attribute list) list ->
theory -> theory * thm list list
end;
structure PureThy: PURE_THY =
struct
(*** theorem database ***)
(** dataype theorems **)
fun pretty_theorems_diff thy prev_thms (space, thms) =
let
val prt_thm = Display.pretty_thm_sg thy;
fun prt_thms (name, [th]) =
Pretty.block [Pretty.str (name ^ ":"), Pretty.brk 1, prt_thm th]
| prt_thms (name, ths) = Pretty.big_list (name ^ ":") (map prt_thm ths);
val diff_thmss = Symtab.fold (fn fact =>
if not (Symtab.member eq_thms prev_thms fact) then cons fact else I) thms [];
val thmss = diff_thmss |> map (apfst (NameSpace.extern space)) |> Library.sort_wrt #1;
in Pretty.big_list "theorems:" (map prt_thms thmss) end;
fun pretty_theorems thy = pretty_theorems_diff thy Symtab.empty;
structure TheoremsData = TheoryDataFun
(struct
val name = "Pure/theorems";
type T =
{theorems: thm list NameSpace.table,
index: FactIndex.T} ref;
fun mk_empty _ =
ref {theorems = NameSpace.empty_table, index = FactIndex.empty}: T;
val empty = mk_empty ();
fun copy (ref x) = ref x;
val extend = mk_empty;
fun merge _ = mk_empty;
fun print thy (ref {theorems, index}) = Pretty.writeln (pretty_theorems thy theorems);
end);
val get_theorems_ref = TheoremsData.get;
val get_theorems = ! o get_theorems_ref;
val theorem_space = #1 o #theorems o get_theorems;
val fact_index_of = #index o get_theorems;
(* print theory *)
val print_theorems = TheoremsData.print;
fun print_theorems_diff prev_thy thy =
Pretty.writeln (pretty_theorems_diff thy
(#2 (#theorems (get_theorems prev_thy))) (#theorems (get_theorems thy)));
fun print_theory thy =
Display.pretty_full_theory thy @
[pretty_theorems thy (#theorems (get_theorems thy))]
|> Pretty.chunks |> Pretty.writeln;
(** retrieve theorems **)
fun the_thms _ (SOME thms) = thms
| the_thms name NONE = error ("Unknown theorem(s) " ^ quote name);
fun single_thm _ [thm] = thm
| single_thm name _ = error ("Single theorem expected " ^ quote name);
(* datatype interval *)
datatype interval =
FromTo of int * int |
From of int |
Single of int;
fun interval _ (FromTo (i, j)) = i upto j
| interval n (From i) = i upto n
| interval _ (Single i) = [i];
fun string_of_interval (FromTo (i, j)) = string_of_int i ^ "-" ^ string_of_int j
| string_of_interval (From i) = string_of_int i ^ "-"
| string_of_interval (Single i) = string_of_int i;
(* datatype thmref *)
datatype thmref =
Name of string |
NameSelection of string * interval list;
fun name_of_thmref (Name name) = name
| name_of_thmref (NameSelection (name, _)) = name;
fun map_name_of_thmref f (Name name) = Name (f name)
| map_name_of_thmref f (NameSelection (name, is)) = NameSelection (f name, is);
fun string_of_thmref (Name name) = name
| string_of_thmref (NameSelection (name, is)) =
name ^ enclose "(" ")" (commas (map string_of_interval is));
(* select_thm *)
fun select_thm (Name _) thms = thms
| select_thm (NameSelection (name, is)) thms =
let
val n = length thms;
fun select i =
if i < 1 orelse i > n then
error ("Bad subscript " ^ string_of_int i ^ " for " ^
quote name ^ " (length " ^ string_of_int n ^ ")")
else List.nth (thms, i - 1);
in map select (List.concat (map (interval n) is)) end;
(* selections *)
fun selections (name, [thm]) = [(Name name, thm)]
| selections (name, thms) = (1 upto length thms, thms) |> ListPair.map (fn (i, thm) =>
(NameSelection (name, [Single i]), thm));
(* get_thm(s)_closure -- statically scoped versions *)
(*beware of proper order of evaluation!*)
fun lookup_thms thy =
let
val thy_ref = Theory.self_ref thy;
val (space, thms) = #theorems (get_theorems thy);
in
fn name =>
Option.map (map (Thm.transfer (Theory.deref thy_ref))) (*dynamic identity*)
(Symtab.lookup (thms, NameSpace.intern space name)) (*static content*)
end;
fun get_thms_closure thy =
let val closures = map lookup_thms (thy :: Theory.ancestors_of thy) in
fn thmref =>
let val name = name_of_thmref thmref
in select_thm thmref (the_thms name (get_first (fn f => f name) closures)) end
end;
fun get_thm_closure thy =
let val get = get_thms_closure thy
in fn thmref => single_thm (name_of_thmref thmref) (get thmref) end;
(* get_thms etc. *)
fun get_thms theory thmref =
let val name = name_of_thmref thmref in
get_first (fn thy => lookup_thms thy name) (theory :: Theory.ancestors_of theory)
|> the_thms name |> select_thm thmref |> map (Thm.transfer theory)
end;
fun get_thmss thy thmrefs = List.concat (map (get_thms thy) thmrefs);
fun get_thm thy thmref = single_thm (name_of_thmref thmref) (get_thms thy thmref);
(* thms_containing etc. *)
fun valid_thms thy (thmref, ths) =
(case try (transform_error (get_thms thy)) thmref of
NONE => false
| SOME ths' => Thm.eq_thms (ths, ths'));
fun thms_containing theory spec =
(theory :: Theory.ancestors_of theory)
|> map (fn thy =>
FactIndex.find (fact_index_of thy) spec
|> List.filter (fn (name, ths) => valid_thms theory (Name name, ths))
|> gen_distinct eq_fst)
|> List.concat;
fun thms_containing_consts thy consts =
thms_containing thy (consts, []) |> map #2 |> List.concat
|> map (fn th => (Thm.name_of_thm th, th));
(* thms_of etc. *)
fun thms_of thy =
let val (_, thms) = #theorems (get_theorems thy) in
map (fn th => (Thm.name_of_thm th, th)) (List.concat (map snd (Symtab.dest thms)))
end;
fun all_thms_of thy = List.concat (map thms_of (thy :: Theory.ancestors_of thy));
(** store theorems **) (*DESTRUCTIVE*)
(* hiding -- affects current theory node only *)
fun hide_thms fully names thy =
let
val r as ref {theorems = (space, thms), index} = get_theorems_ref thy;
val space' = fold (NameSpace.hide fully) names space;
in r := {theorems = (space', thms), index = index}; thy end;
(* naming *)
fun gen_names j len name =
map (fn i => name ^ "_" ^ string_of_int i) (j + 1 upto j + len);
fun name_multi name xs = gen_names 0 (length xs) name ~~ xs;
fun name_thm pre (name, thm) =
if Thm.name_of_thm thm <> "" andalso pre then thm else Thm.name_thm (name, thm);
fun name_thms pre name [x] = [name_thm pre (name, x)]
| name_thms pre name xs = map (name_thm pre) (name_multi name xs);
fun name_thmss name xs =
(case filter_out (null o fst) xs of
[([x], z)] => [([name_thm true (name, x)], z)]
| _ => snd (foldl_map (fn (i, (ys, z)) =>
(i + length ys, (map (name_thm true) (gen_names i (length ys) name ~~ ys), z))) (0, xs)));
(* enter_thms *)
fun warn_overwrite name = warning ("Replaced old copy of theorems " ^ quote name);
fun warn_same name = warning ("Theorem database already contains a copy of " ^ quote name);
fun enter_thms _ _ app_att ("", thms) thy = app_att (thy, thms)
| enter_thms pre_name post_name app_att (bname, thms) thy =
let
val name = Sign.full_name thy bname;
val (thy', thms') = apsnd (post_name name) (app_att (thy, pre_name name thms));
val r as ref {theorems = (space, theorems), index} = get_theorems_ref thy';
val space' = Sign.declare_name thy' name space;
val theorems' = Symtab.update ((name, thms'), theorems);
val index' = FactIndex.add (K false) (name, thms') index;
in
(case Symtab.lookup (theorems, name) of
NONE => ()
| SOME thms'' =>
if Thm.eq_thms (thms', thms'') then warn_same name
else warn_overwrite name);
r := {theorems = (space', theorems'), index = index'};
(thy', thms')
end;
(* add_thms(s) *)
fun add_thms_atts pre_name ((bname, thms), atts) =
enter_thms pre_name (name_thms false)
(Thm.applys_attributes o rpair atts) (bname, thms);
fun gen_add_thmss pre_name args theory =
foldl_map (fn (thy, arg) => add_thms_atts pre_name arg thy) (theory, args);
fun gen_add_thms pre_name args =
apsnd (map hd) o gen_add_thmss pre_name (map (apfst (apsnd single)) args);
val add_thmss = gen_add_thmss (name_thms true);
val add_thms = gen_add_thms (name_thms true);
(* note_thmss(_i) *)
local
fun gen_note_thss get kind_att (thy, ((bname, more_atts), ths_atts)) =
let
fun app (x, (ths, atts)) = Thm.applys_attributes ((x, ths), atts);
val (thy', thms) = thy |> enter_thms
name_thmss (name_thms false) (apsnd List.concat o foldl_map app)
(bname, map (fn (ths, atts) => (get thy ths, atts @ more_atts @ [kind_att])) ths_atts);
in (thy', (bname, thms)) end;
fun gen_note_thmss get kind_att args thy =
foldl_map (gen_note_thss get kind_att) (thy, args);
in
val note_thmss = gen_note_thmss get_thms;
val note_thmss_i = gen_note_thmss (K I);
end;
(* store_thm *)
fun store_thm ((bname, thm), atts) thy =
let val (thy', [th']) = add_thms_atts (name_thms true) ((bname, [thm]), atts) thy
in (thy', th') end;
(* smart_store_thms(_open) *)
local
fun smart_store _ (name, []) =
error ("Cannot store empty list of theorems: " ^ quote name)
| smart_store name_thm (name, [thm]) =
#2 (enter_thms (name_thm true) (name_thm false) I (name, [thm]) (Thm.theory_of_thm thm))
| smart_store name_thm (name, thms) =
let
fun merge (thy, th) = Theory.merge (thy, Thm.theory_of_thm th);
val thy = Library.foldl merge (Thm.theory_of_thm (hd thms), tl thms);
in #2 (enter_thms (name_thm true) (name_thm false) I (name, thms) thy) end;
in
val smart_store_thms = smart_store name_thms;
val smart_store_thms_open = smart_store (K (K I));
end;
(* forall_elim_var(s) -- belongs to drule.ML *)
fun forall_elim_vars_aux strip_vars i th =
let
val {thy, tpairs, prop, ...} = Thm.rep_thm th;
val add_used = Term.fold_aterms
(fn Var ((x, j), _) => if i = j then curry (op ins_string) x else I | _ => I);
val used = fold (fn (t, u) => add_used t o add_used u) tpairs (add_used prop []);
val vars = strip_vars prop;
val cvars = (Term.variantlist (map #1 vars, used), vars)
|> ListPair.map (fn (x, (_, T)) => Thm.cterm_of thy (Var ((x, i), T)));
in fold Thm.forall_elim cvars th end;
val forall_elim_vars = forall_elim_vars_aux Term.strip_all_vars;
fun forall_elim_var i th = forall_elim_vars_aux
(fn Const ("all", _) $ Abs (a, T, _) => [(a, T)]
| _ => raise THM ("forall_elim_vars", i, [th])) i th;
(* store axioms as theorems *)
local
fun get_axs thy named_axs =
map (forall_elim_vars 0 o Thm.get_axiom thy o fst) named_axs;
fun add_single add (thy, ((name, ax), atts)) =
let
val named_ax = [(name, ax)];
val thy' = add named_ax thy;
val thm = hd (get_axs thy' named_ax);
in apsnd hd (gen_add_thms (K I) [((name, thm), atts)] thy') end;
fun add_multi add (thy, ((name, axs), atts)) =
let
val named_axs = name_multi name axs;
val thy' = add named_axs thy;
val thms = get_axs thy' named_axs;
in apsnd hd (gen_add_thmss (K I) [((name, thms), atts)] thy') end;
fun add_singles add args thy = foldl_map (add_single add) (thy, args);
fun add_multis add args thy = foldl_map (add_multi add) (thy, args);
in
val add_axioms = add_singles Theory.add_axioms;
val add_axioms_i = add_singles Theory.add_axioms_i;
val add_axiomss = add_multis Theory.add_axioms;
val add_axiomss_i = add_multis Theory.add_axioms_i;
val add_defs = add_singles o Theory.add_defs;
val add_defs_i = add_singles o Theory.add_defs_i;
val add_defss = add_multis o Theory.add_defs;
val add_defss_i = add_multis o Theory.add_defs_i;
end;
(*** the ProtoPure theory ***)
val aT = TFree ("'a", []);
val A = Free ("A", propT);
val proto_pure =
Context.pre_pure_thy
|> Sign.init_data
|> Theory.init_data
|> Proofterm.init_data
|> TheoremsData.init
|> Theory.add_types
[("fun", 2, NoSyn),
("prop", 0, NoSyn),
("itself", 1, NoSyn),
("dummy", 0, NoSyn)]
|> Theory.add_nonterminals Syntax.pure_nonterms
|> Theory.add_syntax Syntax.pure_syntax
|> Theory.add_syntax Syntax.pure_appl_syntax
|> Theory.add_modesyntax (Symbol.xsymbolsN, true) Syntax.pure_xsym_syntax
|> Theory.add_syntax
[("==>", "prop => prop => prop", Delimfix "op ==>"),
(Term.dummy_patternN, "aprop", Delimfix "'_")]
|> Theory.add_consts
[("==", "'a => 'a => prop", InfixrName ("==", 2)),
("==>", "prop => prop => prop", Mixfix ("(_/ ==> _)", [2, 1], 1)),
("all", "('a => prop) => prop", Binder ("!!", 0, 0)),
("Goal", "prop => prop", NoSyn),
("TYPE", "'a itself", NoSyn),
(Term.dummy_patternN, "'a", Delimfix "'_")]
|> Theory.add_finals_i false
[Const ("==", [aT, aT] ---> propT),
Const ("==>", [propT, propT] ---> propT),
Const ("all", (aT --> propT) --> propT),
Const ("TYPE", a_itselfT)]
|> Theory.add_modesyntax ("", false)
(Syntax.pure_syntax_output @ Syntax.pure_appl_syntax)
|> Theory.add_trfuns Syntax.pure_trfuns
|> Theory.add_trfunsT Syntax.pure_trfunsT
|> Sign.local_path
|> (#1 oo (add_defs_i false o map Thm.no_attributes))
[("Goal_def", Logic.mk_equals (Logic.mk_goal A, A))]
|> (#1 o add_thmss [(("nothing", []), [])])
|> Theory.add_axioms_i Proofterm.equality_axms
|> Theory.end_theory;
structure ProtoPure =
struct
val thy = proto_pure;
val Goal_def = get_axiom thy "Goal_def";
end;
end;
structure BasicPureThy: BASIC_PURE_THY = PureThy;
open BasicPureThy;