fixed a problem where a permutation is not analysed
when the term is of the form
(pi o f) x1...xn
This was the case because the head of this term is the
constant "nominal.perm". Now an applicability predicate
decides the right behaviour of the simproc
%
\begin{isabellebody}%
\def\isabellecontext{base}%
%
\isadelimtheory
\isanewline
\isanewline
\isanewline
%
\endisadelimtheory
%
\isatagtheory
\isacommand{theory}\isamarkupfalse%
\ base\isanewline
\isakeyword{imports}\ CPure\isanewline
\isakeyword{uses}\ {\isachardoublequoteopen}setup{\isachardot}ML{\isachardoublequoteclose}\isanewline
\isakeyword{begin}\isanewline
\isanewline
\isacommand{end}\isamarkupfalse%
%
\endisatagtheory
{\isafoldtheory}%
%
\isadelimtheory
\isanewline
%
\endisadelimtheory
\end{isabellebody}%
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "root"
%%% End: