(* Title: LCF/fix
ID: $Id$
Author: Tobias Nipkow
Copyright 1992 University of Cambridge
Fixedpoint theory
*)
signature FIX =
sig
val adm_eq: thm
val adm_not_eq_tr: thm
val adm_not_not: thm
val not_eq_TT: thm
val not_eq_FF: thm
val not_eq_UU: thm
val induct2: thm
val induct_tac: string -> int -> tactic
val induct2_tac: string*string -> int -> tactic
end;
structure Fix:FIX =
struct
val adm_eq = prove_goal LCF.thy "adm(%x. t(x)=(u(x)::'a::cpo))"
(fn _ => [rewtac eq_def,
REPEAT(rstac[adm_conj,adm_less]1)]);
val adm_not_not = prove_goal LCF.thy "adm(P) ==> adm(%x.~~P(x))"
(fn prems => [simp_tac (LCF_ss addsimps prems) 1]);
val tac = rtac tr_induct 1 THEN REPEAT(simp_tac LCF_ss 1);
val not_eq_TT = prove_goal LCF.thy "ALL p. ~p=TT <-> (p=FF | p=UU)"
(fn _ => [tac]) RS spec;
val not_eq_FF = prove_goal LCF.thy "ALL p. ~p=FF <-> (p=TT | p=UU)"
(fn _ => [tac]) RS spec;
val not_eq_UU = prove_goal LCF.thy "ALL p. ~p=UU <-> (p=TT | p=FF)"
(fn _ => [tac]) RS spec;
val adm_not_eq_tr = prove_goal LCF.thy "ALL p::tr. adm(%x. ~t(x)=p)"
(fn _ => [rtac tr_induct 1,
REPEAT(simp_tac (LCF_ss addsimps [not_eq_TT,not_eq_FF,not_eq_UU]) 1 THEN
REPEAT(rstac [adm_disj,adm_eq] 1))]) RS spec;
val adm_lemmas = [adm_not_free,adm_eq,adm_less,adm_not_less,adm_not_eq_tr,
adm_conj,adm_disj,adm_imp,adm_all];
fun induct_tac v i = res_inst_tac[("f",v)] induct i THEN
REPEAT(rstac adm_lemmas i);
val least_FIX = prove_goal LCF.thy "f(p) = p ==> FIX(f) << p"
(fn [prem] => [induct_tac "f" 1, rtac minimal 1, strip_tac 1,
stac (prem RS sym) 1, etac less_ap_term 1]);
val lfp_is_FIX = prove_goal LCF.thy
"[| f(p) = p; ALL q. f(q)=q --> p << q |] ==> p = FIX(f)"
(fn [prem1,prem2] => [rtac less_anti_sym 1,
rtac (prem2 RS spec RS mp) 1, rtac FIX_eq 1,
rtac least_FIX 1, rtac prem1 1]);
val ffix = read_instantiate [("f","f::?'a=>?'a")] FIX_eq;
val gfix = read_instantiate [("f","g::?'a=>?'a")] FIX_eq;
val ss = LCF_ss addsimps [ffix,gfix];
val FIX_pair = prove_goal LCF.thy
"<FIX(f),FIX(g)> = FIX(%p.<f(FST(p)),g(SND(p))>)"
(fn _ => [rtac lfp_is_FIX 1, simp_tac ss 1,
strip_tac 1, simp_tac (LCF_ss addsimps [PROD_less]) 1,
rtac conjI 1, rtac least_FIX 1, etac subst 1, rtac (FST RS sym) 1,
rtac least_FIX 1, etac subst 1, rtac (SND RS sym) 1]);
val FIX_pair_conj = rewrite_rule (map mk_meta_eq [PROD_eq,FST,SND]) FIX_pair;
val FIX1 = FIX_pair_conj RS conjunct1;
val FIX2 = FIX_pair_conj RS conjunct2;
val induct2 = prove_goal LCF.thy
"[| adm(%p. P(FST(p),SND(p))); P(UU::'a,UU::'b);\
\ ALL x y. P(x,y) --> P(f(x),g(y)) |] ==> P(FIX(f),FIX(g))"
(fn prems => [EVERY1
[res_inst_tac [("f","f"),("g","g")] (standard(FIX1 RS ssubst)),
res_inst_tac [("f","f"),("g","g")] (standard(FIX2 RS ssubst)),
res_inst_tac [("f","%x. <f(FST(x)),g(SND(x))>")] induct,
rstac prems, simp_tac ss, rstac prems,
simp_tac (LCF_ss addsimps [expand_all_PROD]), rstac prems]]);
fun induct2_tac (f,g) i = res_inst_tac[("f",f),("g",g)] induct2 i THEN
REPEAT(rstac adm_lemmas i);
end;
open Fix;