Removed "duplicate fact binding" error message.
(* Title: Pure/pure_thy.ML
ID: $Id$
Author: Markus Wenzel, TU Muenchen
License: GPL (GNU GENERAL PUBLIC LICENSE)
Theorem database, derived theory operations, and the ProtoPure theory.
*)
signature BASIC_PURE_THY =
sig
val print_theorems: theory -> unit
val print_theory: theory -> unit
val get_thm: theory -> xstring -> thm
val get_thms: theory -> xstring -> thm list
val get_thmss: theory -> xstring list -> thm list
val thms_of: theory -> (string * thm) list
structure ProtoPure:
sig
val thy: theory
val Goal_def: thm
end
end;
signature PURE_THY =
sig
include BASIC_PURE_THY
val get_thm_closure: theory -> xstring -> thm
val get_thms_closure: theory -> xstring -> thm list
val single_thm: string -> thm list -> thm
val cond_extern_thm_sg: Sign.sg -> string -> xstring
val thms_containing: theory -> string list * string list -> (string * thm list) list
val thms_containing_consts: theory -> string list -> (string * thm) list
val find_intros: theory -> term -> (string * thm) list
val find_intros_goal : theory -> thm -> int -> (string * thm) list
val find_elims : theory -> term -> (string * thm) list
val hide_thms: bool -> string list -> theory -> theory
val store_thm: (bstring * thm) * theory attribute list -> theory -> theory * thm
val smart_store_thms: (bstring * thm list) -> thm list
val smart_store_thms_open: (bstring * thm list) -> thm list
val forall_elim_var: int -> thm -> thm
val forall_elim_vars: int -> thm -> thm
val add_thms: ((bstring * thm) * theory attribute list) list -> theory -> theory * thm list
val add_thmss: ((bstring * thm list) * theory attribute list) list -> theory
-> theory * thm list list
val have_thmss: theory attribute -> ((bstring * theory attribute list) *
(xstring * theory attribute list) list) list -> theory -> theory * (bstring * thm list) list
val have_thmss_i: theory attribute -> ((bstring * theory attribute list) *
(thm list * theory attribute list) list) list -> theory -> theory * (bstring * thm list) list
val add_axioms: ((bstring * string) * theory attribute list) list -> theory -> theory * thm list
val add_axioms_i: ((bstring * term) * theory attribute list) list -> theory -> theory * thm list
val add_axiomss: ((bstring * string list) * theory attribute list) list -> theory
-> theory * thm list list
val add_axiomss_i: ((bstring * term list) * theory attribute list) list -> theory
-> theory * thm list list
val add_defs: bool -> ((bstring * string) * theory attribute list) list
-> theory -> theory * thm list
val add_defs_i: bool -> ((bstring * term) * theory attribute list) list
-> theory -> theory * thm list
val add_defss: bool -> ((bstring * string list) * theory attribute list) list
-> theory -> theory * thm list list
val add_defss_i: bool -> ((bstring * term list) * theory attribute list) list
-> theory -> theory * thm list list
val get_name: theory -> string
val put_name: string -> theory -> theory
val global_path: theory -> theory
val local_path: theory -> theory
val begin_theory: string -> theory list -> theory
val end_theory: theory -> theory
val checkpoint: theory -> theory
val add_typedecls: (bstring * string list * mixfix) list -> theory -> theory
end;
structure PureThy: PURE_THY =
struct
(*** theorem database ***)
(** data kind 'Pure/theorems' **)
structure TheoremsDataArgs =
struct
val name = "Pure/theorems";
type T =
{space: NameSpace.T,
thms_tab: thm list Symtab.table,
index: FactIndex.T} ref;
fun mk_empty _ =
ref {space = NameSpace.empty, thms_tab = Symtab.empty, index = FactIndex.empty}: T;
val empty = mk_empty ();
fun copy (ref x) = ref x;
val prep_ext = mk_empty;
val merge = mk_empty;
fun pretty sg (ref {space, thms_tab, index = _}) =
let
val prt_thm = Display.pretty_thm_sg sg;
fun prt_thms (name, [th]) =
Pretty.block [Pretty.str (name ^ ":"), Pretty.brk 1, prt_thm th]
| prt_thms (name, ths) = Pretty.big_list (name ^ ":") (map prt_thm ths);
val thmss = NameSpace.cond_extern_table space thms_tab;
in Pretty.big_list "theorems:" (map prt_thms thmss) end;
fun print sg data = Pretty.writeln (pretty sg data);
end;
structure TheoremsData = TheoryDataFun(TheoremsDataArgs);
val get_theorems_sg = TheoremsData.get_sg;
val get_theorems = TheoremsData.get;
val cond_extern_thm_sg = NameSpace.cond_extern o #space o ! o get_theorems_sg;
(* print theory *)
val print_theorems = TheoremsData.print;
fun print_theory thy =
Display.pretty_full_theory thy @
[TheoremsDataArgs.pretty (Theory.sign_of thy) (get_theorems thy)]
|> Pretty.chunks |> Pretty.writeln;
(** retrieve theorems **)
(* selections *)
fun the_thms _ (Some thms) = thms
| the_thms name None = error ("Unknown theorem(s) " ^ quote name);
fun single_thm _ [thm] = thm
| single_thm name _ = error ("Single theorem expected " ^ quote name);
(* get_thm(s)_closure -- statically scoped versions *)
(*beware of proper order of evaluation!*)
fun lookup_thms thy =
let
val sg_ref = Sign.self_ref (Theory.sign_of thy);
val ref {space, thms_tab, ...} = get_theorems thy;
in
fn name =>
apsome (map (Thm.transfer_sg (Sign.deref sg_ref))) (*semi-dynamic identity*)
(Symtab.lookup (thms_tab, NameSpace.intern space name)) (*static content*)
end;
fun get_thms_closure thy =
let val closures = map lookup_thms (thy :: Theory.ancestors_of thy)
in fn name => the_thms name (get_first (fn f => f name) closures) end;
fun get_thm_closure thy =
let val get = get_thms_closure thy
in fn name => single_thm name (get name) end;
(* get_thm etc. *)
fun get_thms theory name =
get_first (fn thy => lookup_thms thy name) (theory :: Theory.ancestors_of theory)
|> the_thms name |> map (Thm.transfer theory);
fun get_thmss thy names = flat (map (get_thms thy) names);
fun get_thm thy name = single_thm name (get_thms thy name);
(* thms_of *)
fun thms_of thy =
let val ref {thms_tab, ...} = get_theorems thy in
map (fn th => (Thm.name_of_thm th, th)) (flat (map snd (Symtab.dest thms_tab)))
end;
(* thms_containing *)
fun thms_containing thy idx =
let
fun valid (name, ths) =
(case try (transform_error (get_thms thy)) name of
None => false
| Some ths' => Library.equal_lists Thm.eq_thm (ths, ths'));
in
(thy :: Theory.ancestors_of thy)
|> map (gen_distinct eq_fst o filter valid o FactIndex.find idx o #index o ! o get_theorems)
|> flat
end;
fun thms_containing_consts thy consts =
thms_containing thy (consts, []) |> map #2 |> flat
|> map (fn th => (Thm.name_of_thm th, th))
(* intro/elim theorems *)
(* intro: given a goal state, find a suitable intro rule for some subgoal *)
(* elim: given a theorem thm,
find a theorem whose major premise eliminates the conclusion of thm *)
(*top_const: main constant, ignoring Trueprop *)
fun top_const (_ $ t) = (case head_of t of Const (c, _) => Some c | _ => None)
| top_const _ = None;
val intro_const = top_const o concl_of;
fun elim_const thm = case prems_of thm of [] => None | p::_ => top_const p;
fun index_intros thy c = thms_containing_consts thy [c]
|> filter (fn (_, thm) => intro_const thm = Some c);
fun index_elims thy c = thms_containing_consts thy [c]
|> filter (fn (_, thm) => elim_const thm = Some c);
(*returns all those named_thms whose subterm extracted by extract can be
instantiated to obj; the list is sorted according to the number of premises
and the size of the required substitution.*)
fun select_match(obj, signobj, named_thms, extract) =
let val tsig = Sign.tsig_of signobj
fun matches prop =
case extract prop of
None => false
| Some pat => Pattern.matches tsig (pat, obj);
fun substsize prop =
let val Some pat = extract prop
val (_,subst) = Pattern.match tsig (pat,obj)
in foldl op+ (0, map (size_of_term o snd) subst) end
fun thm_ord ((p0,s0,_),(p1,s1,_)) =
prod_ord (int_ord o pairself (fn 0 => 0 | x => 1)) int_ord ((p0,s0),(p1,s1));
fun select((p as (_,thm))::named_thms, sels) =
let val {prop, sign, ...} = rep_thm thm
in select(named_thms,
if Sign.subsig(sign, signobj) andalso matches prop
then (nprems_of thm,substsize prop,p)::sels
else sels)
end
| select([],sels) = sels
in map (fn (_,_,t) => t) (sort thm_ord (select(named_thms, []))) end;
fun find_matching index extract thy prop =
(case top_const prop of None => []
| Some c => select_match(prop,Theory.sign_of thy,index thy c,extract))
val find_intros = find_matching index_intros (Some o Logic.strip_imp_concl)
fun find_intros_goal thy st i =
find_intros thy (Logic.concl_of_goal (prop_of st) i);
val find_elims = find_matching index_elims
(fn prop => case Logic.strip_imp_prems prop of [] => None | p::_ => Some p)
(** store theorems **) (*DESTRUCTIVE*)
(* hiding -- affects current theory node only! *)
fun hide_thms fully names thy =
let
val r as ref {space, thms_tab, index} = get_theorems thy;
val space' = NameSpace.hide fully (space, names);
in r := {space = space', thms_tab = thms_tab, index = index}; thy end;
(* naming *)
fun gen_names j len name =
map (fn i => name ^ "_" ^ string_of_int i) (j+1 upto j+len);
fun name_multi name xs = gen_names 0 (length xs) name ~~ xs;
fun name_thm pre (p as (_, thm)) =
if Thm.name_of_thm thm <> "" andalso pre then thm else Thm.name_thm p;
fun name_thms pre name [x] = [name_thm pre (name, x)]
| name_thms pre name xs = map (name_thm pre) (name_multi name xs);
fun name_thmss name xs = (case filter_out (null o fst) xs of
[([x], z)] => [([name_thm true (name, x)], z)]
| _ => snd (foldl_map (fn (i, (ys, z)) => (i + length ys,
(map (name_thm true) (gen_names i (length ys) name ~~ ys), z))) (0, xs)));
(* enter_thms *)
fun warn_overwrite name = warning ("Replaced old copy of theorems " ^ quote name);
fun warn_same name = warning ("Theorem database already contains a copy of " ^ quote name);
fun enter_thms _ _ _ app_att thy ("", thms) = app_att (thy, thms)
| enter_thms sg pre_name post_name app_att thy (bname, thms) =
let
val name = Sign.full_name sg bname;
val (thy', thms') = app_att (thy, pre_name name thms);
val named_thms = post_name name thms';
val r as ref {space, thms_tab, index} = get_theorems_sg sg;
val space' = NameSpace.extend (space, [name]);
val thms_tab' = Symtab.update ((name, named_thms), thms_tab);
val index' = FactIndex.add (K false) (index, (name, named_thms));
in
(case Symtab.lookup (thms_tab, name) of
None => ()
| Some thms' =>
if Library.equal_lists Thm.eq_thm (thms', named_thms) then warn_same name
else warn_overwrite name);
r := {space = space', thms_tab = thms_tab', index = index'};
(thy', named_thms)
end;
(* add_thms(s) *)
fun add_thms_atts pre_name ((bname, thms), atts) thy =
enter_thms (Theory.sign_of thy) pre_name (name_thms false)
(Thm.applys_attributes o rpair atts) thy (bname, thms);
fun gen_add_thmss pre_name args theory =
foldl_map (fn (thy, arg) => add_thms_atts pre_name arg thy) (theory, args);
fun gen_add_thms pre_name args =
apsnd (map hd) o gen_add_thmss pre_name (map (apfst (apsnd single)) args);
val add_thmss = gen_add_thmss (name_thms true);
val add_thms = gen_add_thms (name_thms true);
(* have_thmss(_i) *)
local
fun gen_have_thss get kind_att (thy, ((bname, more_atts), ths_atts)) =
let
fun app (x, (ths, atts)) = Thm.applys_attributes ((x, ths), atts);
val (thy', thms) = enter_thms (Theory.sign_of thy)
name_thmss (name_thms false) (apsnd flat o foldl_map app) thy
(bname, map (fn (ths, atts) => (get thy ths, atts @ more_atts @ [kind_att])) ths_atts);
in (thy', (bname, thms)) end;
fun gen_have_thmss get kind_att args thy =
foldl_map (gen_have_thss get kind_att) (thy, args);
in
val have_thmss = gen_have_thmss get_thms;
val have_thmss_i = gen_have_thmss (K I);
end;
(* store_thm *)
fun store_thm ((bname, thm), atts) thy =
let val (thy', [th']) = add_thms_atts (name_thms true) ((bname, [thm]), atts) thy
in (thy', th') end;
(* smart_store_thms *)
fun gen_smart_store_thms _ (name, []) =
error ("Cannot store empty list of theorems: " ^ quote name)
| gen_smart_store_thms name_thm (name, [thm]) =
snd (enter_thms (Thm.sign_of_thm thm) (name_thm true) (name_thm false)
I () (name, [thm]))
| gen_smart_store_thms name_thm (name, thms) =
let
val merge_sg = Sign.merge_refs o apsnd (Sign.self_ref o Thm.sign_of_thm);
val sg_ref = foldl merge_sg (Sign.self_ref (Thm.sign_of_thm (hd thms)), tl thms);
in snd (enter_thms (Sign.deref sg_ref) (name_thm true) (name_thm false)
I () (name, thms))
end;
val smart_store_thms = gen_smart_store_thms name_thms;
val smart_store_thms_open = gen_smart_store_thms (K (K I));
(* forall_elim_vars (belongs to drule.ML) *)
(*Replace outermost quantified variable by Var of given index.*)
fun forall_elim_var i th =
let val {prop,sign,...} = rep_thm th
in case prop of
Const ("all", _) $ Abs (a, T, _) =>
let val used = map (fst o fst)
(filter (equal i o snd o fst) (Term.add_vars ([], prop)))
in forall_elim (cterm_of sign (Var ((variant used a, i), T))) th end
| _ => raise THM ("forall_elim_var", i, [th])
end;
(*Repeat forall_elim_var until all outer quantifiers are removed*)
fun forall_elim_vars i th =
forall_elim_vars i (forall_elim_var i th)
handle THM _ => th;
(* store axioms as theorems *)
local
fun get_axs thy named_axs =
map (forall_elim_vars 0 o Thm.get_axiom thy o fst) named_axs;
fun add_single add (thy, ((name, ax), atts)) =
let
val named_ax = [(name, ax)];
val thy' = add named_ax thy;
val thm = hd (get_axs thy' named_ax);
in apsnd hd (gen_add_thms (K I) [((name, thm), atts)] thy') end;
fun add_multi add (thy, ((name, axs), atts)) =
let
val named_axs = name_multi name axs;
val thy' = add named_axs thy;
val thms = get_axs thy' named_axs;
in apsnd hd (gen_add_thmss (K I) [((name, thms), atts)] thy') end;
fun add_singles add args thy = foldl_map (add_single add) (thy, args);
fun add_multis add args thy = foldl_map (add_multi add) (thy, args);
in
val add_axioms = add_singles Theory.add_axioms;
val add_axioms_i = add_singles Theory.add_axioms_i;
val add_axiomss = add_multis Theory.add_axioms;
val add_axiomss_i = add_multis Theory.add_axioms_i;
val add_defs = add_singles o Theory.add_defs;
val add_defs_i = add_singles o Theory.add_defs_i;
val add_defss = add_multis o Theory.add_defs;
val add_defss_i = add_multis o Theory.add_defs_i;
end;
(*** derived theory operations ***)
(** theory management **)
(* data kind 'Pure/theory_management' *)
structure TheoryManagementDataArgs =
struct
val name = "Pure/theory_management";
type T = {name: string, version: int};
val empty = {name = "", version = 0};
val copy = I;
val prep_ext = I;
fun merge _ = empty;
fun print _ _ = ();
end;
structure TheoryManagementData = TheoryDataFun(TheoryManagementDataArgs);
val get_info = TheoryManagementData.get;
val put_info = TheoryManagementData.put;
(* get / put name *)
val get_name = #name o get_info;
fun put_name name = put_info {name = name, version = 0};
(* control prefixing of theory name *)
val global_path = Theory.root_path;
fun local_path thy =
thy |> Theory.root_path |> Theory.add_path (get_name thy);
(* begin / end theory *)
fun begin_theory name thys =
Theory.prep_ext_merge thys
|> put_name name
|> local_path;
fun end_theory thy =
thy
|> Theory.add_name (get_name thy);
fun checkpoint thy =
if is_draft thy then
let val {name, version} = get_info thy in
thy
|> Theory.add_name (name ^ ":" ^ string_of_int version)
|> put_info {name = name, version = version + 1}
end
else thy;
(** add logical types **)
fun add_typedecls decls thy =
let
val full = Sign.full_name (Theory.sign_of thy);
fun type_of (raw_name, vs, mx) =
if null (duplicates vs) then (raw_name, length vs, mx)
else error ("Duplicate parameters in type declaration: " ^ quote raw_name);
fun arity_of (raw_name, len, mx) =
(full (Syntax.type_name raw_name mx), replicate len logicS, logicS);
val types = map type_of decls;
val arities = map arity_of types;
in
thy
|> Theory.add_types types
|> Theory.add_arities_i arities
end;
(*** the ProtoPure theory ***)
val proto_pure =
Theory.pre_pure
|> Library.apply [TheoremsData.init, TheoryManagementData.init, Proofterm.init]
|> put_name "ProtoPure"
|> global_path
|> Theory.add_types
[("fun", 2, NoSyn),
("prop", 0, NoSyn),
("itself", 1, NoSyn),
("dummy", 0, NoSyn)]
|> Theory.add_classes_i [(logicC, [])]
|> Theory.add_defsort_i logicS
|> Theory.add_arities_i
[("fun", [logicS, logicS], logicS),
("prop", [], logicS),
("itself", [logicS], logicS)]
|> Theory.add_nonterminals Syntax.pure_nonterms
|> Theory.add_syntax Syntax.pure_syntax
|> Theory.add_modesyntax (Symbol.xsymbolsN, true) Syntax.pure_xsym_syntax
|> Theory.add_syntax
[("==>", "[prop, prop] => prop", Delimfix "op ==>"),
(Term.dummy_patternN, "aprop", Delimfix "'_")]
|> Theory.add_consts
[("==", "['a::{}, 'a] => prop", InfixrName ("==", 2)),
("==>", "[prop, prop] => prop", Mixfix ("(_/ ==> _)", [2, 1], 1)),
("all", "('a => prop) => prop", Binder ("!!", 0, 0)),
("Goal", "prop => prop", NoSyn),
("TYPE", "'a itself", NoSyn),
(Term.dummy_patternN, "'a", Delimfix "'_")]
|> Theory.add_finals_i false
[Const("==",[TFree("'a",[]),TFree("'a",[])]--->propT),
Const("==>",[propT,propT]--->propT),
Const("all",(TFree("'a",logicS)-->propT)-->propT),
Const("TYPE",a_itselfT)]
|> Theory.add_modesyntax ("", false)
(Syntax.pure_syntax_output @ Syntax.pure_appl_syntax)
|> Theory.add_trfuns Syntax.pure_trfuns
|> Theory.add_trfunsT Syntax.pure_trfunsT
|> local_path
|> (#1 oo (add_defs_i false o map Thm.no_attributes))
[("Goal_def", let val A = Free ("A", propT) in Logic.mk_equals (Logic.mk_goal A, A) end)]
|> (#1 o add_thmss [(("nothing", []), [])])
|> Theory.add_axioms_i Proofterm.equality_axms
|> end_theory;
structure ProtoPure =
struct
val thy = proto_pure;
val Goal_def = get_axiom thy "Goal_def";
end;
end;
structure BasicPureThy: BASIC_PURE_THY = PureThy;
open BasicPureThy;