(* Title: ZF/AC/AC7_AC9.thy
Author: Krzysztof Grabczewski
The proofs needed to state that AC7, AC8 and AC9 are equivalent to the previous
instances of AC.
*)
theory AC7_AC9
imports AC_Equiv
begin
(* ********************************************************************** *)
(* Lemmas used in the proofs AC7 ==> AC6 and AC9 ==> AC1 *)
(* - Sigma_fun_space_not0 *)
(* - Sigma_fun_space_eqpoll *)
(* ********************************************************************** *)
lemma Sigma_fun_space_not0: "[| 0\<notin>A; B \<in> A |] ==> (nat->\<Union>(A)) * B \<noteq> 0"
by (blast dest!: Sigma_empty_iff [THEN iffD1] Union_empty_iff [THEN iffD1])
lemma inj_lemma:
"C \<in> A ==> (\<lambda>g \<in> (nat->\<Union>(A))*C.
(\<lambda>n \<in> nat. if(n=0, snd(g), fst(g)`(n #- 1))))
\<in> inj((nat->\<Union>(A))*C, (nat->\<Union>(A)) ) "
apply (unfold inj_def)
apply (rule CollectI)
apply (fast intro!: lam_type if_type apply_type fst_type snd_type, auto)
apply (rule fun_extension, assumption+)
apply (drule lam_eqE [OF _ nat_succI], assumption, simp)
apply (drule lam_eqE [OF _ nat_0I], simp)
done
lemma Sigma_fun_space_eqpoll:
"[| C \<in> A; 0\<notin>A |] ==> (nat->\<Union>(A)) * C \<approx> (nat->\<Union>(A))"
apply (rule eqpollI)
apply (simp add: lepoll_def)
apply (fast intro!: inj_lemma)
apply (fast elim!: prod_lepoll_self not_sym [THEN not_emptyE] subst_elem
elim: swap)
done
(* ********************************************************************** *)
(* AC6 ==> AC7 *)
(* ********************************************************************** *)
lemma AC6_AC7: "AC6 ==> AC7"
by (unfold AC6_def AC7_def, blast)
(* ********************************************************************** *)
(* AC7 ==> AC6, Rubin & Rubin p. 12, Theorem 2.8 *)
(* The case of the empty family of sets added in order to complete *)
(* the proof. *)
(* ********************************************************************** *)
lemma lemma1_1: "y \<in> (\<Prod>B \<in> A. Y*B) ==> (\<lambda>B \<in> A. snd(y`B)) \<in> (\<Prod>B \<in> A. B)"
by (fast intro!: lam_type snd_type apply_type)
lemma lemma1_2:
"y \<in> (\<Prod>B \<in> {Y*C. C \<in> A}. B) ==> (\<lambda>B \<in> A. y`(Y*B)) \<in> (\<Prod>B \<in> A. Y*B)"
apply (fast intro!: lam_type apply_type)
done
lemma AC7_AC6_lemma1:
"(\<Prod>B \<in> {(nat->\<Union>(A))*C. C \<in> A}. B) \<noteq> 0 ==> (\<Prod>B \<in> A. B) \<noteq> 0"
by (fast intro!: equals0I lemma1_1 lemma1_2)
lemma AC7_AC6_lemma2: "0 \<notin> A ==> 0 \<notin> {(nat -> \<Union>(A)) * C. C \<in> A}"
by (blast dest: Sigma_fun_space_not0)
lemma AC7_AC6: "AC7 ==> AC6"
apply (unfold AC6_def AC7_def)
apply (rule allI)
apply (rule impI)
apply (case_tac "A=0", simp)
apply (rule AC7_AC6_lemma1)
apply (erule allE)
apply (blast del: notI
intro!: AC7_AC6_lemma2 intro: eqpoll_sym eqpoll_trans
Sigma_fun_space_eqpoll)
done
(* ********************************************************************** *)
(* AC1 ==> AC8 *)
(* ********************************************************************** *)
lemma AC1_AC8_lemma1:
"\<forall>B \<in> A. \<exists>B1 B2. B=<B1,B2> & B1 \<approx> B2
==> 0 \<notin> { bij(fst(B),snd(B)). B \<in> A }"
apply (unfold eqpoll_def, auto)
done
lemma AC1_AC8_lemma2:
"[| f \<in> (\<Prod>X \<in> RepFun(A,p). X); D \<in> A |] ==> (\<lambda>x \<in> A. f`p(x))`D \<in> p(D)"
apply (simp, fast elim!: apply_type)
done
lemma AC1_AC8: "AC1 ==> AC8"
apply (unfold AC1_def AC8_def)
apply (fast dest: AC1_AC8_lemma1 AC1_AC8_lemma2)
done
(* ********************************************************************** *)
(* AC8 ==> AC9 *)
(* - this proof replaces the following two from Rubin & Rubin: *)
(* AC8 ==> AC1 and AC1 ==> AC9 *)
(* ********************************************************************** *)
lemma AC8_AC9_lemma:
"\<forall>B1 \<in> A. \<forall>B2 \<in> A. B1 \<approx> B2
==> \<forall>B \<in> A*A. \<exists>B1 B2. B=<B1,B2> & B1 \<approx> B2"
by fast
lemma AC8_AC9: "AC8 ==> AC9"
apply (unfold AC8_def AC9_def)
apply (intro allI impI)
apply (erule allE)
apply (erule impE, erule AC8_AC9_lemma, force)
done
(* ********************************************************************** *)
(* AC9 ==> AC1 *)
(* The idea of this proof comes from "Equivalents of the Axiom of Choice" *)
(* by Rubin & Rubin. But (x * y) is not necessarily equipollent to *)
(* (x * y) \<union> {0} when y is a set of total functions acting from nat to *)
(* \<Union>(A) -- therefore we have used the set (y * nat) instead of y. *)
(* ********************************************************************** *)
lemma snd_lepoll_SigmaI: "b \<in> B \<Longrightarrow> X \<lesssim> B \<times> X"
by (blast intro: lepoll_trans prod_lepoll_self eqpoll_imp_lepoll
prod_commute_eqpoll)
lemma nat_lepoll_lemma:
"[|0 \<notin> A; B \<in> A|] ==> nat \<lesssim> ((nat \<rightarrow> \<Union>(A)) \<times> B) \<times> nat"
by (blast dest: Sigma_fun_space_not0 intro: snd_lepoll_SigmaI)
lemma AC9_AC1_lemma1:
"[| 0\<notin>A; A\<noteq>0;
C = {((nat->\<Union>(A))*B)*nat. B \<in> A} \<union>
{cons(0,((nat->\<Union>(A))*B)*nat). B \<in> A};
B1 \<in> C; B2 \<in> C |]
==> B1 \<approx> B2"
by (blast intro!: nat_lepoll_lemma Sigma_fun_space_eqpoll
nat_cons_eqpoll [THEN eqpoll_trans]
prod_eqpoll_cong [OF _ eqpoll_refl]
intro: eqpoll_trans eqpoll_sym )
lemma AC9_AC1_lemma2:
"\<forall>B1 \<in> {(F*B)*N. B \<in> A} \<union> {cons(0,(F*B)*N). B \<in> A}.
\<forall>B2 \<in> {(F*B)*N. B \<in> A} \<union> {cons(0,(F*B)*N). B \<in> A}.
f`<B1,B2> \<in> bij(B1, B2)
==> (\<lambda>B \<in> A. snd(fst((f`<cons(0,(F*B)*N),(F*B)*N>)`0))) \<in> (\<Prod>X \<in> A. X)"
apply (intro lam_type snd_type fst_type)
apply (rule apply_type [OF _ consI1])
apply (fast intro!: fun_weaken_type bij_is_fun)
done
lemma AC9_AC1: "AC9 ==> AC1"
apply (unfold AC1_def AC9_def)
apply (intro allI impI)
apply (erule allE)
apply (case_tac "A\<noteq>0")
apply (blast dest: AC9_AC1_lemma1 AC9_AC1_lemma2, force)
done
end