methods "relation" and "lexicographic_order" do not insist on applying the "f.termination" rule of a function.
(* Title: CCL/Type.thy
ID: $Id$
Author: Martin Coen
Copyright 1993 University of Cambridge
*)
header {* Types in CCL are defined as sets of terms *}
theory Type
imports Term
begin
consts
Subtype :: "['a set, 'a => o] => 'a set"
Bool :: "i set"
Unit :: "i set"
Plus :: "[i set, i set] => i set" (infixr "+" 55)
Pi :: "[i set, i => i set] => i set"
Sigma :: "[i set, i => i set] => i set"
Nat :: "i set"
List :: "i set => i set"
Lists :: "i set => i set"
ILists :: "i set => i set"
TAll :: "(i set => i set) => i set" (binder "TALL " 55)
TEx :: "(i set => i set) => i set" (binder "TEX " 55)
Lift :: "i set => i set" ("(3[_])")
SPLIT :: "[i, [i, i] => i set] => i set"
syntax
"@Pi" :: "[idt, i set, i set] => i set" ("(3PROD _:_./ _)"
[0,0,60] 60)
"@Sigma" :: "[idt, i set, i set] => i set" ("(3SUM _:_./ _)"
[0,0,60] 60)
"@->" :: "[i set, i set] => i set" ("(_ ->/ _)" [54, 53] 53)
"@*" :: "[i set, i set] => i set" ("(_ */ _)" [56, 55] 55)
"@Subtype" :: "[idt, 'a set, o] => 'a set" ("(1{_: _ ./ _})")
translations
"PROD x:A. B" => "Pi(A, %x. B)"
"A -> B" => "Pi(A, %_. B)"
"SUM x:A. B" => "Sigma(A, %x. B)"
"A * B" => "Sigma(A, %_. B)"
"{x: A. B}" == "Subtype(A, %x. B)"
print_translation {*
[("Pi", dependent_tr' ("@Pi", "@->")),
("Sigma", dependent_tr' ("@Sigma", "@*"))] *}
axioms
Subtype_def: "{x:A. P(x)} == {x. x:A & P(x)}"
Unit_def: "Unit == {x. x=one}"
Bool_def: "Bool == {x. x=true | x=false}"
Plus_def: "A+B == {x. (EX a:A. x=inl(a)) | (EX b:B. x=inr(b))}"
Pi_def: "Pi(A,B) == {x. EX b. x=lam x. b(x) & (ALL x:A. b(x):B(x))}"
Sigma_def: "Sigma(A,B) == {x. EX a:A. EX b:B(a).x=<a,b>}"
Nat_def: "Nat == lfp(% X. Unit + X)"
List_def: "List(A) == lfp(% X. Unit + A*X)"
Lists_def: "Lists(A) == gfp(% X. Unit + A*X)"
ILists_def: "ILists(A) == gfp(% X.{} + A*X)"
Tall_def: "TALL X. B(X) == Inter({X. EX Y. X=B(Y)})"
Tex_def: "TEX X. B(X) == Union({X. EX Y. X=B(Y)})"
Lift_def: "[A] == A Un {bot}"
SPLIT_def: "SPLIT(p,B) == Union({A. EX x y. p=<x,y> & A=B(x,y)})"
lemmas simp_type_defs =
Subtype_def Unit_def Bool_def Plus_def Sigma_def Pi_def Lift_def Tall_def Tex_def
and ind_type_defs = Nat_def List_def
and simp_data_defs = one_def inl_def inr_def
and ind_data_defs = zero_def succ_def nil_def cons_def
lemma subsetXH: "A <= B <-> (ALL x. x:A --> x:B)"
by blast
subsection {* Exhaustion Rules *}
lemma EmptyXH: "!!a. a : {} <-> False"
and SubtypeXH: "!!a A P. a : {x:A. P(x)} <-> (a:A & P(a))"
and UnitXH: "!!a. a : Unit <-> a=one"
and BoolXH: "!!a. a : Bool <-> a=true | a=false"
and PlusXH: "!!a A B. a : A+B <-> (EX x:A. a=inl(x)) | (EX x:B. a=inr(x))"
and PiXH: "!!a A B. a : PROD x:A. B(x) <-> (EX b. a=lam x. b(x) & (ALL x:A. b(x):B(x)))"
and SgXH: "!!a A B. a : SUM x:A. B(x) <-> (EX x:A. EX y:B(x).a=<x,y>)"
unfolding simp_type_defs by blast+
lemmas XHs = EmptyXH SubtypeXH UnitXH BoolXH PlusXH PiXH SgXH
lemma LiftXH: "a : [A] <-> (a=bot | a:A)"
and TallXH: "a : TALL X. B(X) <-> (ALL X. a:B(X))"
and TexXH: "a : TEX X. B(X) <-> (EX X. a:B(X))"
unfolding simp_type_defs by blast+
ML {*
bind_thms ("case_rls", XH_to_Es (thms "XHs"));
*}
subsection {* Canonical Type Rules *}
lemma oneT: "one : Unit"
and trueT: "true : Bool"
and falseT: "false : Bool"
and lamT: "!!b B. [| !!x. x:A ==> b(x):B(x) |] ==> lam x. b(x) : Pi(A,B)"
and pairT: "!!b B. [| a:A; b:B(a) |] ==> <a,b>:Sigma(A,B)"
and inlT: "a:A ==> inl(a) : A+B"
and inrT: "b:B ==> inr(b) : A+B"
by (blast intro: XHs [THEN iffD2])+
lemmas canTs = oneT trueT falseT pairT lamT inlT inrT
subsection {* Non-Canonical Type Rules *}
lemma lem: "[| a:B(u); u=v |] ==> a : B(v)"
by blast
ML {*
local
val lemma = thm "lem"
val bspec = thm "bspec"
val bexE = thm "bexE"
in
fun mk_ncanT_tac ctxt defs top_crls crls s = prove_goalw (ProofContext.theory_of ctxt) defs s
(fn major::prems => [(resolve_tac ([major] RL top_crls) 1),
(REPEAT_SOME (eresolve_tac (crls @ [exE,bexE,conjE,disjE]))),
(ALLGOALS (asm_simp_tac (local_simpset_of ctxt))),
(ALLGOALS (ares_tac (prems RL [lemma]) ORELSE'
etac bspec )),
(safe_tac (local_claset_of ctxt addSIs prems))])
val ncanT_tac = mk_ncanT_tac @{context} [] case_rls case_rls
end
*}
ML {*
bind_thm ("ifT", ncanT_tac
"[| b:Bool; b=true ==> t:A(true); b=false ==> u:A(false) |] ==> if b then t else u : A(b)");
bind_thm ("applyT", ncanT_tac "[| f : Pi(A,B); a:A |] ==> f ` a : B(a)");
bind_thm ("splitT", ncanT_tac
"[| p:Sigma(A,B); !!x y. [| x:A; y:B(x); p=<x,y> |] ==> c(x,y):C(<x,y>) |] ==> split(p,c):C(p)");
bind_thm ("whenT", ncanT_tac
"[| p:A+B; !!x.[| x:A; p=inl(x) |] ==> a(x):C(inl(x)); !!y.[| y:B; p=inr(y) |] ==> b(y):C(inr(y)) |] ==> when(p,a,b) : C(p)");
*}
lemmas ncanTs = ifT applyT splitT whenT
subsection {* Subtypes *}
lemma SubtypeD1: "a : Subtype(A, P) ==> a : A"
and SubtypeD2: "a : Subtype(A, P) ==> P(a)"
by (simp_all add: SubtypeXH)
lemma SubtypeI: "[| a:A; P(a) |] ==> a : {x:A. P(x)}"
by (simp add: SubtypeXH)
lemma SubtypeE: "[| a : {x:A. P(x)}; [| a:A; P(a) |] ==> Q |] ==> Q"
by (simp add: SubtypeXH)
subsection {* Monotonicity *}
lemma idM: "mono (%X. X)"
apply (rule monoI)
apply assumption
done
lemma constM: "mono(%X. A)"
apply (rule monoI)
apply (rule subset_refl)
done
lemma "mono(%X. A(X)) ==> mono(%X.[A(X)])"
apply (rule subsetI [THEN monoI])
apply (drule LiftXH [THEN iffD1])
apply (erule disjE)
apply (erule disjI1 [THEN LiftXH [THEN iffD2]])
apply (rule disjI2 [THEN LiftXH [THEN iffD2]])
apply (drule (1) monoD)
apply blast
done
lemma SgM:
"[| mono(%X. A(X)); !!x X. x:A(X) ==> mono(%X. B(X,x)) |] ==>
mono(%X. Sigma(A(X),B(X)))"
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls
dest!: monoD [THEN subsetD])
lemma PiM:
"[| !!x. x:A ==> mono(%X. B(X,x)) |] ==> mono(%X. Pi(A,B(X)))"
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls
dest!: monoD [THEN subsetD])
lemma PlusM:
"[| mono(%X. A(X)); mono(%X. B(X)) |] ==> mono(%X. A(X)+B(X))"
by (blast intro!: subsetI [THEN monoI] canTs elim!: case_rls
dest!: monoD [THEN subsetD])
subsection {* Recursive types *}
subsubsection {* Conversion Rules for Fixed Points via monotonicity and Tarski *}
lemma NatM: "mono(%X. Unit+X)";
apply (rule PlusM constM idM)+
done
lemma def_NatB: "Nat = Unit + Nat"
apply (rule def_lfp_Tarski [OF Nat_def])
apply (rule NatM)
done
lemma ListM: "mono(%X.(Unit+Sigma(A,%y. X)))"
apply (rule PlusM SgM constM idM)+
done
lemma def_ListB: "List(A) = Unit + A * List(A)"
apply (rule def_lfp_Tarski [OF List_def])
apply (rule ListM)
done
lemma def_ListsB: "Lists(A) = Unit + A * Lists(A)"
apply (rule def_gfp_Tarski [OF Lists_def])
apply (rule ListM)
done
lemma IListsM: "mono(%X.({} + Sigma(A,%y. X)))"
apply (rule PlusM SgM constM idM)+
done
lemma def_IListsB: "ILists(A) = {} + A * ILists(A)"
apply (rule def_gfp_Tarski [OF ILists_def])
apply (rule IListsM)
done
lemmas ind_type_eqs = def_NatB def_ListB def_ListsB def_IListsB
subsection {* Exhaustion Rules *}
lemma NatXH: "a : Nat <-> (a=zero | (EX x:Nat. a=succ(x)))"
and ListXH: "a : List(A) <-> (a=[] | (EX x:A. EX xs:List(A).a=x$xs))"
and ListsXH: "a : Lists(A) <-> (a=[] | (EX x:A. EX xs:Lists(A).a=x$xs))"
and IListsXH: "a : ILists(A) <-> (EX x:A. EX xs:ILists(A).a=x$xs)"
unfolding ind_data_defs
by (rule ind_type_eqs [THEN XHlemma1], blast intro!: canTs elim!: case_rls)+
lemmas iXHs = NatXH ListXH
ML {* bind_thms ("icase_rls", XH_to_Es (thms "iXHs")) *}
subsection {* Type Rules *}
lemma zeroT: "zero : Nat"
and succT: "n:Nat ==> succ(n) : Nat"
and nilT: "[] : List(A)"
and consT: "[| h:A; t:List(A) |] ==> h$t : List(A)"
by (blast intro: iXHs [THEN iffD2])+
lemmas icanTs = zeroT succT nilT consT
ML {*
val incanT_tac = mk_ncanT_tac @{context} [] (thms "icase_rls") (thms "case_rls");
bind_thm ("ncaseT", incanT_tac
"[| n:Nat; n=zero ==> b:C(zero); !!x.[| x:Nat; n=succ(x) |] ==> c(x):C(succ(x)) |] ==> ncase(n,b,c) : C(n)");
bind_thm ("lcaseT", incanT_tac
"[| l:List(A); l=[] ==> b:C([]); !!h t.[| h:A; t:List(A); l=h$t |] ==> c(h,t):C(h$t) |] ==> lcase(l,b,c) : C(l)");
*}
lemmas incanTs = ncaseT lcaseT
subsection {* Induction Rules *}
lemmas ind_Ms = NatM ListM
lemma Nat_ind: "[| n:Nat; P(zero); !!x.[| x:Nat; P(x) |] ==> P(succ(x)) |] ==> P(n)"
apply (unfold ind_data_defs)
apply (erule def_induct [OF Nat_def _ NatM])
apply (blast intro: canTs elim!: case_rls)
done
lemma List_ind:
"[| l:List(A); P([]); !!x xs.[| x:A; xs:List(A); P(xs) |] ==> P(x$xs) |] ==> P(l)"
apply (unfold ind_data_defs)
apply (erule def_induct [OF List_def _ ListM])
apply (blast intro: canTs elim!: case_rls)
done
lemmas inds = Nat_ind List_ind
subsection {* Primitive Recursive Rules *}
lemma nrecT:
"[| n:Nat; b:C(zero);
!!x g.[| x:Nat; g:C(x) |] ==> c(x,g):C(succ(x)) |] ==>
nrec(n,b,c) : C(n)"
by (erule Nat_ind) auto
lemma lrecT:
"[| l:List(A); b:C([]);
!!x xs g.[| x:A; xs:List(A); g:C(xs) |] ==> c(x,xs,g):C(x$xs) |] ==>
lrec(l,b,c) : C(l)"
by (erule List_ind) auto
lemmas precTs = nrecT lrecT
subsection {* Theorem proving *}
lemma SgE2:
"[| <a,b> : Sigma(A,B); [| a:A; b:B(a) |] ==> P |] ==> P"
unfolding SgXH by blast
(* General theorem proving ignores non-canonical term-formers, *)
(* - intro rules are type rules for canonical terms *)
(* - elim rules are case rules (no non-canonical terms appear) *)
ML {* bind_thms ("XHEs", XH_to_Es (thms "XHs")) *}
lemmas [intro!] = SubtypeI canTs icanTs
and [elim!] = SubtypeE XHEs
subsection {* Infinite Data Types *}
lemma lfp_subset_gfp: "mono(f) ==> lfp(f) <= gfp(f)"
apply (rule lfp_lowerbound [THEN subset_trans])
apply (erule gfp_lemma3)
apply (rule subset_refl)
done
lemma gfpI:
assumes "a:A"
and "!!x X.[| x:A; ALL y:A. t(y):X |] ==> t(x) : B(X)"
shows "t(a) : gfp(B)"
apply (rule coinduct)
apply (rule_tac P = "%x. EX y:A. x=t (y)" in CollectI)
apply (blast intro!: prems)+
done
lemma def_gfpI:
"[| C==gfp(B); a:A; !!x X.[| x:A; ALL y:A. t(y):X |] ==> t(x) : B(X) |] ==>
t(a) : C"
apply unfold
apply (erule gfpI)
apply blast
done
(* EG *)
lemma "letrec g x be zero$g(x) in g(bot) : Lists(Nat)"
apply (rule refl [THEN UnitXH [THEN iffD2], THEN Lists_def [THEN def_gfpI]])
apply (subst letrecB)
apply (unfold cons_def)
apply blast
done
subsection {* Lemmas and tactics for using the rule @{text
"coinduct3"} on @{text "[="} and @{text "="} *}
lemma lfpI: "[| mono(f); a : f(lfp(f)) |] ==> a : lfp(f)"
apply (erule lfp_Tarski [THEN ssubst])
apply assumption
done
lemma ssubst_single: "[| a=a'; a' : A |] ==> a : A"
by simp
lemma ssubst_pair: "[| a=a'; b=b'; <a',b'> : A |] ==> <a,b> : A"
by simp
(***)
ML {*
local
val lfpI = thm "lfpI"
val coinduct3_mono_lemma = thm "coinduct3_mono_lemma"
fun mk_thm s = prove_goal (the_context ()) s (fn mono::prems =>
[fast_tac (claset () addIs ((mono RS coinduct3_mono_lemma RS lfpI)::prems)) 1])
in
val ci3_RI = mk_thm "[| mono(Agen); a : R |] ==> a : lfp(%x. Agen(x) Un R Un A)"
val ci3_AgenI = mk_thm "[| mono(Agen); a : Agen(lfp(%x. Agen(x) Un R Un A)) |] ==> a : lfp(%x. Agen(x) Un R Un A)"
val ci3_AI = mk_thm "[| mono(Agen); a : A |] ==> a : lfp(%x. Agen(x) Un R Un A)"
fun mk_genIs thy defs genXH gen_mono s = prove_goalw thy defs s
(fn prems => [rtac (genXH RS iffD2) 1,
simp_tac (simpset ()) 1,
TRY (fast_tac (claset () addIs
([genXH RS iffD2,gen_mono RS coinduct3_mono_lemma RS lfpI]
@ prems)) 1)])
end;
bind_thm ("ci3_RI", ci3_RI);
bind_thm ("ci3_AgenI", ci3_AgenI);
bind_thm ("ci3_AI", ci3_AI);
*}
subsection {* POgen *}
lemma PO_refl: "<a,a> : PO"
apply (rule po_refl [THEN PO_iff [THEN iffD1]])
done
ML {*
val POgenIs = map (mk_genIs (the_context ()) (thms "data_defs") (thm "POgenXH") (thm "POgen_mono"))
["<true,true> : POgen(R)",
"<false,false> : POgen(R)",
"[| <a,a'> : R; <b,b'> : R |] ==> <<a,b>,<a',b'>> : POgen(R)",
"[|!!x. <b(x),b'(x)> : R |] ==><lam x. b(x),lam x. b'(x)> : POgen(R)",
"<one,one> : POgen(R)",
"<a,a'> : lfp(%x. POgen(x) Un R Un PO) ==> <inl(a),inl(a')> : POgen(lfp(%x. POgen(x) Un R Un PO))",
"<b,b'> : lfp(%x. POgen(x) Un R Un PO) ==> <inr(b),inr(b')> : POgen(lfp(%x. POgen(x) Un R Un PO))",
"<zero,zero> : POgen(lfp(%x. POgen(x) Un R Un PO))",
"<n,n'> : lfp(%x. POgen(x) Un R Un PO) ==> <succ(n),succ(n')> : POgen(lfp(%x. POgen(x) Un R Un PO))",
"<[],[]> : POgen(lfp(%x. POgen(x) Un R Un PO))",
"[| <h,h'> : lfp(%x. POgen(x) Un R Un PO); <t,t'> : lfp(%x. POgen(x) Un R Un PO) |] ==> <h$t,h'$t'> : POgen(lfp(%x. POgen(x) Un R Un PO))"];
fun POgen_tac (rla,rlb) i =
SELECT_GOAL (CLASET safe_tac) i THEN
rtac (rlb RS (rla RS (thm "ssubst_pair"))) i THEN
(REPEAT (resolve_tac (POgenIs @ [thm "PO_refl" RS (thm "POgen_mono" RS ci3_AI)] @
(POgenIs RL [thm "POgen_mono" RS ci3_AgenI]) @ [thm "POgen_mono" RS ci3_RI]) i));
*}
subsection {* EQgen *}
lemma EQ_refl: "<a,a> : EQ"
apply (rule refl [THEN EQ_iff [THEN iffD1]])
done
ML {*
val EQgenIs = map (mk_genIs (the_context ()) (thms "data_defs") (thm "EQgenXH") (thm "EQgen_mono"))
["<true,true> : EQgen(R)",
"<false,false> : EQgen(R)",
"[| <a,a'> : R; <b,b'> : R |] ==> <<a,b>,<a',b'>> : EQgen(R)",
"[|!!x. <b(x),b'(x)> : R |] ==> <lam x. b(x),lam x. b'(x)> : EQgen(R)",
"<one,one> : EQgen(R)",
"<a,a'> : lfp(%x. EQgen(x) Un R Un EQ) ==> <inl(a),inl(a')> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))",
"<b,b'> : lfp(%x. EQgen(x) Un R Un EQ) ==> <inr(b),inr(b')> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))",
"<zero,zero> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))",
"<n,n'> : lfp(%x. EQgen(x) Un R Un EQ) ==> <succ(n),succ(n')> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))",
"<[],[]> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))",
"[| <h,h'> : lfp(%x. EQgen(x) Un R Un EQ); <t,t'> : lfp(%x. EQgen(x) Un R Un EQ) |] ==> <h$t,h'$t'> : EQgen(lfp(%x. EQgen(x) Un R Un EQ))"];
fun EQgen_raw_tac i =
(REPEAT (resolve_tac (EQgenIs @ [@{thm EQ_refl} RS (@{thm EQgen_mono} RS ci3_AI)] @
(EQgenIs RL [@{thm EQgen_mono} RS ci3_AgenI]) @ [@{thm EQgen_mono} RS ci3_RI]) i))
(* Goals of the form R <= EQgen(R) - rewrite elements <a,b> : EQgen(R) using rews and *)
(* then reduce this to a goal <a',b'> : R (hopefully?) *)
(* rews are rewrite rules that would cause looping in the simpifier *)
fun EQgen_tac ctxt rews i =
SELECT_GOAL
(TRY (safe_tac (local_claset_of ctxt)) THEN
resolve_tac ((rews@[refl]) RL ((rews@[refl]) RL [@{thm ssubst_pair}])) i THEN
ALLGOALS (simp_tac (local_simpset_of ctxt)) THEN
ALLGOALS EQgen_raw_tac) i
*}
end