(* Title: ZF/UNITY/Merge
ID: $Id$
Author: Sidi O Ehmety, Cambridge University Computer Laboratory
Copyright 2002 University of Cambridge
A multiple-client allocator from a single-client allocator:
Merge specification
*)
theory Merge = AllocBase + Follows + Guar + GenPrefix:
(** Merge specification (the number of inputs is Nclients) ***)
(** Parameter A represents the type of items to Merge **)
constdefs
(*spec (10)*)
merge_increasing :: "[i, i, i] =>i"
"merge_increasing(A, Out, iOut) == program guarantees
(lift(Out) IncreasingWrt prefix(A)/list(A)) Int
(lift(iOut) IncreasingWrt prefix(nat)/list(nat))"
(*spec (11)*)
merge_eq_Out :: "[i, i] =>i"
"merge_eq_Out(Out, iOut) == program guarantees
Always({s \<in> state. length(s`Out) = length(s`iOut)})"
(*spec (12)*)
merge_bounded :: "i=>i"
"merge_bounded(iOut) == program guarantees
Always({s \<in> state. \<forall>elt \<in> set_of_list(s`iOut). elt<Nclients})"
(*spec (13)*)
(* Parameter A represents the type of tokens *)
merge_follows :: "[i, i=>i, i, i] =>i"
"merge_follows(A, In, Out, iOut) ==
(\<Inter>n \<in> Nclients. lift(In(n)) IncreasingWrt prefix(A)/list(A))
guarantees
(\<Inter>n \<in> Nclients.
(%s. sublist(s`Out, {k \<in> nat. k < length(s`iOut) &
nth(k, s`iOut) = n})) Fols lift(In(n))
Wrt prefix(A)/list(A))"
(*spec: preserves part*)
merge_preserves :: "[i=>i] =>i"
"merge_preserves(In) == \<Inter>n \<in> nat. preserves(lift(In(n)))"
(* environmental constraints*)
merge_allowed_acts :: "[i, i] =>i"
"merge_allowed_acts(Out, iOut) ==
{F \<in> program. AllowedActs(F) =
cons(id(state), (\<Union>G \<in> preserves(lift(Out)) \<inter>
preserves(lift(iOut)). Acts(G)))}"
merge_spec :: "[i, i =>i, i, i]=>i"
"merge_spec(A, In, Out, iOut) ==
merge_increasing(A, Out, iOut) \<inter> merge_eq_Out(Out, iOut) \<inter>
merge_bounded(iOut) \<inter> merge_follows(A, In, Out, iOut)
\<inter> merge_allowed_acts(Out, iOut) \<inter> merge_preserves(In)"
(** State definitions. OUTPUT variables are locals **)
locale merge =
fixes In --{*merge's INPUT histories: streams to merge*}
and Out --{*merge's OUTPUT history: merged items*}
and iOut --{*merge's OUTPUT history: origins of merged items*}
and A --{*the type of items being merged *}
and M
assumes var_assumes [simp]:
"(\<forall>n. In(n):var) & Out \<in> var & iOut \<in> var"
and all_distinct_vars:
"\<forall>n. all_distinct([In(n), Out, iOut])"
and type_assumes [simp]:
"(\<forall>n. type_of(In(n))=list(A)) &
type_of(Out)=list(A) &
type_of(iOut)=list(nat)"
and default_val_assumes [simp]:
"(\<forall>n. default_val(In(n))=Nil) &
default_val(Out)=Nil &
default_val(iOut)=Nil"
and merge_spec: "M \<in> merge_spec(A, In, Out, iOut)"
lemma (in merge) In_value_type [TC,simp]: "s \<in> state ==> s`In(n) \<in> list(A)"
apply (unfold state_def)
apply (drule_tac a = "In (n)" in apply_type)
apply auto
done
lemma (in merge) Out_value_type [TC,simp]: "s \<in> state ==> s`Out \<in> list(A)"
apply (unfold state_def)
apply (drule_tac a = "Out" in apply_type)
apply auto
done
lemma (in merge) iOut_value_type [TC,simp]: "s \<in> state ==> s`iOut \<in> list(nat)"
apply (unfold state_def)
apply (drule_tac a = "iOut" in apply_type)
apply auto
done
lemma (in merge) M_in_program [intro,simp]: "M \<in> program"
apply (cut_tac merge_spec)
apply (auto dest: guarantees_type [THEN subsetD]
simp add: merge_spec_def merge_increasing_def)
done
lemma (in merge) merge_Allowed:
"Allowed(M) = (preserves(lift(Out)) Int preserves(lift(iOut)))"
apply (insert merge_spec preserves_type [of "lift (Out)"])
apply (auto simp add: merge_spec_def merge_allowed_acts_def Allowed_def safety_prop_Acts_iff)
done
lemma (in merge) M_ok_iff:
"G \<in> program ==>
M ok G <-> (G \<in> preserves(lift(Out)) &
G \<in> preserves(lift(iOut)) & M \<in> Allowed(G))"
apply (cut_tac merge_spec)
apply (auto simp add: merge_Allowed ok_iff_Allowed)
done
lemma (in merge) merge_Always_Out_eq_iOut:
"[| G \<in> preserves(lift(Out)); G \<in> preserves(lift(iOut));
M \<in> Allowed(G) |]
==> M \<squnion> G \<in> Always({s \<in> state. length(s`Out)=length(s`iOut)})"
apply (frule preserves_type [THEN subsetD])
apply (subgoal_tac "G \<in> program")
prefer 2 apply (assumption)
apply (frule M_ok_iff)
apply (cut_tac merge_spec)
apply (force dest: guaranteesD simp add: merge_spec_def merge_eq_Out_def)
done
lemma (in merge) merge_Bounded:
"[| G \<in> preserves(lift(iOut)); G \<in> preserves(lift(Out));
M \<in> Allowed(G) |] ==>
M \<squnion> G: Always({s \<in> state. \<forall>elt \<in> set_of_list(s`iOut). elt<Nclients})"
apply (frule preserves_type [THEN subsetD])
apply (frule M_ok_iff)
apply (cut_tac merge_spec)
apply (force dest: guaranteesD simp add: merge_spec_def merge_bounded_def)
done
lemma (in merge) merge_bag_Follows_lemma:
"[| G \<in> preserves(lift(iOut));
G: preserves(lift(Out)); M \<in> Allowed(G) |]
==> M \<squnion> G \<in> Always
({s \<in> state. msetsum(%i. bag_of(sublist(s`Out,
{k \<in> nat. k < length(s`iOut) & nth(k, s`iOut)=i})),
Nclients, A) = bag_of(s`Out)})"
apply (rule Always_Diff_Un_eq [THEN iffD1])
apply (rule_tac [2] state_AlwaysI [THEN Always_weaken])
apply (rule Always_Int_I [OF merge_Always_Out_eq_iOut merge_Bounded])
apply auto
apply (subst bag_of_sublist_UN_disjoint [symmetric])
apply (auto simp add: nat_into_Finite set_of_list_conv_nth [OF iOut_value_type])
apply (subgoal_tac " (\<Union>i \<in> Nclients. {k \<in> nat. k < length (x`iOut) & nth (k, x`iOut) = i}) = length (x`iOut) ")
apply (auto simp add: sublist_upt_eq_take [OF Out_value_type]
length_type [OF iOut_value_type]
take_all [OF _ Out_value_type]
length_type [OF iOut_value_type])
apply (rule equalityI)
apply (blast dest: ltD)
apply clarify
apply (subgoal_tac "length (x ` iOut) \<in> nat")
prefer 2 apply (simp add: length_type [OF iOut_value_type]);
apply (subgoal_tac "xa \<in> nat")
apply (simp_all add: Ord_mem_iff_lt)
prefer 2 apply (blast intro: lt_trans)
apply (drule_tac x = "nth (xa, x`iOut)" and P = "%elt. ?X (elt) --> elt<Nclients" in bspec)
apply (simp add: ltI nat_into_Ord)
apply (blast dest: ltD)
done
theorem (in merge) merge_bag_Follows:
"M \<in> (\<Inter>n \<in> Nclients. lift(In(n)) IncreasingWrt prefix(A)/list(A))
guarantees
(%s. bag_of(s`Out)) Fols
(%s. msetsum(%i. bag_of(s`In(i)),Nclients, A)) Wrt MultLe(A, r)/Mult(A)"
apply (cut_tac merge_spec)
apply (rule merge_bag_Follows_lemma [THEN Always_Follows1, THEN guaranteesI])
apply (simp_all add: M_ok_iff)
apply clarify
apply (rule Follows_state_ofD1 [OF Follows_msetsum_UN])
apply (simp_all add: nat_into_Finite bag_of_multiset [of _ A])
apply (simp add: INT_iff merge_spec_def merge_follows_def)
apply clarify
apply (cut_tac merge_spec)
apply (subgoal_tac "M ok G")
prefer 2 apply (force intro: M_ok_iff [THEN iffD2])
apply (drule guaranteesD)
apply assumption
apply (simp add: merge_spec_def merge_follows_def)
apply blast
apply (simp cong add: Follows_cong
add: refl_prefix
mono_bag_of [THEN subset_Follows_comp, THEN subsetD, unfolded comp_def])
done
end