(* Title: FOLP/FOLP.thy
ID: $Id$
Author: Martin D Coen, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
*)
header {* Classical First-Order Logic with Proofs *}
theory FOLP
imports IFOLP
uses
("classical.ML") ("simp.ML") ("simpdata.ML")
begin
consts
cla :: "[p=>p]=>p"
axioms
classical: "(!!x. x:~P ==> f(x):P) ==> cla(f):P"
(*** Classical introduction rules for | and EX ***)
lemma disjCI:
assumes "!!x. x:~Q ==> f(x):P"
shows "?p : P|Q"
apply (rule classical)
apply (assumption | rule assms disjI1 notI)+
apply (assumption | rule disjI2 notE)+
done
(*introduction rule involving only EX*)
lemma ex_classical:
assumes "!!u. u:~(EX x. P(x)) ==> f(u):P(a)"
shows "?p : EX x. P(x)"
apply (rule classical)
apply (rule exI, rule assms, assumption)
done
(*version of above, simplifying ~EX to ALL~ *)
lemma exCI:
assumes "!!u. u:ALL x. ~P(x) ==> f(u):P(a)"
shows "?p : EX x. P(x)"
apply (rule ex_classical)
apply (rule notI [THEN allI, THEN assms])
apply (erule notE)
apply (erule exI)
done
lemma excluded_middle: "?p : ~P | P"
apply (rule disjCI)
apply assumption
done
(*** Special elimination rules *)
(*Classical implies (-->) elimination. *)
lemma impCE:
assumes major: "p:P-->Q"
and r1: "!!x. x:~P ==> f(x):R"
and r2: "!!y. y:Q ==> g(y):R"
shows "?p : R"
apply (rule excluded_middle [THEN disjE])
apply (tactic {* DEPTH_SOLVE (atac 1 ORELSE
resolve_tac [@{thm r1}, @{thm r2}, @{thm major} RS @{thm mp}] 1) *})
done
(*Double negation law*)
lemma notnotD: "p:~~P ==> ?p : P"
apply (rule classical)
apply (erule notE)
apply assumption
done
(*** Tactics for implication and contradiction ***)
(*Classical <-> elimination. Proof substitutes P=Q in
~P ==> ~Q and P ==> Q *)
lemma iffCE:
assumes major: "p:P<->Q"
and r1: "!!x y.[| x:P; y:Q |] ==> f(x,y):R"
and r2: "!!x y.[| x:~P; y:~Q |] ==> g(x,y):R"
shows "?p : R"
apply (insert major)
apply (unfold iff_def)
apply (rule conjE)
apply (tactic {* DEPTH_SOLVE_1 (etac @{thm impCE} 1 ORELSE
eresolve_tac [@{thm notE}, @{thm impE}] 1 THEN atac 1 ORELSE atac 1 ORELSE
resolve_tac [@{thm r1}, @{thm r2}] 1) *})+
done
(*Should be used as swap since ~P becomes redundant*)
lemma swap:
assumes major: "p:~P"
and r: "!!x. x:~Q ==> f(x):P"
shows "?p : Q"
apply (rule classical)
apply (rule major [THEN notE])
apply (rule r)
apply assumption
done
use "classical.ML" (* Patched 'cos matching won't instantiate proof *)
use "simp.ML" (* Patched 'cos matching won't instantiate proof *)
ML {*
(*** Applying ClassicalFun to create a classical prover ***)
structure Classical_Data =
struct
val sizef = size_of_thm
val mp = @{thm mp}
val not_elim = @{thm notE}
val swap = @{thm swap}
val hyp_subst_tacs = [hyp_subst_tac]
end;
structure Cla = ClassicalFun(Classical_Data);
open Cla;
(*Propositional rules
-- iffCE might seem better, but in the examples in ex/cla
run about 7% slower than with iffE*)
val prop_cs =
empty_cs addSIs [@{thm refl}, @{thm TrueI}, @{thm conjI}, @{thm disjCI},
@{thm impI}, @{thm notI}, @{thm iffI}]
addSEs [@{thm conjE}, @{thm disjE}, @{thm impCE}, @{thm FalseE}, @{thm iffE}];
(*Quantifier rules*)
val FOLP_cs =
prop_cs addSIs [@{thm allI}] addIs [@{thm exI}, @{thm ex1I}]
addSEs [@{thm exE}, @{thm ex1E}] addEs [@{thm allE}];
val FOLP_dup_cs =
prop_cs addSIs [@{thm allI}] addIs [@{thm exCI}, @{thm ex1I}]
addSEs [@{thm exE}, @{thm ex1E}] addEs [@{thm all_dupE}];
*}
lemma cla_rews:
"?p1 : P | ~P"
"?p2 : ~P | P"
"?p3 : ~ ~ P <-> P"
"?p4 : (~P --> P) <-> P"
apply (tactic {* ALLGOALS (Cla.fast_tac FOLP_cs) *})
done
use "simpdata.ML"
end