(* Title: ZF/AC/Hartog.thy
Author: Krzysztof Grabczewski
Hartog's function.
*)
theory Hartog
imports AC_Equiv
begin
definition
Hartog :: "i => i" where
"Hartog(X) == LEAST i. ~ i \<lesssim> X"
lemma Ords_in_set: "\<forall>a. Ord(a) --> a \<in> X ==> P"
apply (rule_tac X = "{y \<in> X. Ord (y) }" in ON_class [elim_format])
apply fast
done
lemma Ord_lepoll_imp_ex_well_ord:
"[| Ord(a); a \<lesssim> X |]
==> \<exists>Y. Y \<subseteq> X & (\<exists>R. well_ord(Y,R) & ordertype(Y,R)=a)"
apply (unfold lepoll_def)
apply (erule exE)
apply (intro exI conjI)
apply (erule inj_is_fun [THEN fun_is_rel, THEN image_subset])
apply (rule well_ord_rvimage [OF bij_is_inj well_ord_Memrel])
apply (erule restrict_bij [THEN bij_converse_bij])
apply (rule subset_refl, assumption)
apply (rule trans)
apply (rule bij_ordertype_vimage)
apply (erule restrict_bij [THEN bij_converse_bij])
apply (rule subset_refl)
apply (erule well_ord_Memrel)
apply (erule ordertype_Memrel)
done
lemma Ord_lepoll_imp_eq_ordertype:
"[| Ord(a); a \<lesssim> X |] ==> \<exists>Y. Y \<subseteq> X & (\<exists>R. R \<subseteq> X*X & ordertype(Y,R)=a)"
apply (drule Ord_lepoll_imp_ex_well_ord, assumption, clarify)
apply (intro exI conjI)
apply (erule_tac [3] ordertype_Int, auto)
done
lemma Ords_lepoll_set_lemma:
"(\<forall>a. Ord(a) --> a \<lesssim> X) ==>
\<forall>a. Ord(a) -->
a \<in> {b. Z \<in> Pow(X)*Pow(X*X), \<exists>Y R. Z=<Y,R> & ordertype(Y,R)=b}"
apply (intro allI impI)
apply (elim allE impE, assumption)
apply (blast dest!: Ord_lepoll_imp_eq_ordertype intro: sym)
done
lemma Ords_lepoll_set: "\<forall>a. Ord(a) --> a \<lesssim> X ==> P"
by (erule Ords_lepoll_set_lemma [THEN Ords_in_set])
lemma ex_Ord_not_lepoll: "\<exists>a. Ord(a) & ~a \<lesssim> X"
apply (rule ccontr)
apply (best intro: Ords_lepoll_set)
done
lemma not_Hartog_lepoll_self: "~ Hartog(A) \<lesssim> A"
apply (unfold Hartog_def)
apply (rule ex_Ord_not_lepoll [THEN exE])
apply (rule LeastI, auto)
done
lemmas Hartog_lepoll_selfE = not_Hartog_lepoll_self [THEN notE]
lemma Ord_Hartog: "Ord(Hartog(A))"
by (unfold Hartog_def, rule Ord_Least)
lemma less_HartogE1: "[| i < Hartog(A); ~ i \<lesssim> A |] ==> P"
by (unfold Hartog_def, fast elim: less_LeastE)
lemma less_HartogE: "[| i < Hartog(A); i \<approx> Hartog(A) |] ==> P"
by (blast intro: less_HartogE1 eqpoll_sym eqpoll_imp_lepoll
lepoll_trans [THEN Hartog_lepoll_selfE])
lemma Card_Hartog: "Card(Hartog(A))"
by (fast intro!: CardI Ord_Hartog elim: less_HartogE)
end