(* Title: ZF/ex/integ.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1993 University of Cambridge
The integers as equivalence classes over nat*nat.
Could also prove...
"znegative(z) ==> $# zmagnitude(z) = $~ z"
"~ znegative(z) ==> $# zmagnitude(z) = z"
$< is a linear ordering
$+ and $* are monotonic wrt $<
*)
open Integ;
(*** Proving that intrel is an equivalence relation ***)
(*By luck, requires no typing premises for y1, y2,y3*)
val eqa::eqb::prems = goal Arith.thy
"[| x1 #+ y2 = x2 #+ y1; x2 #+ y3 = x3 #+ y2; \
\ x1: nat; x2: nat; x3: nat |] ==> x1 #+ y3 = x3 #+ y1";
by (res_inst_tac [("k","x2")] add_left_cancel 1);
by (resolve_tac prems 2);
by (rtac (add_left_commute RS trans) 1 THEN typechk_tac prems);
by (stac eqb 1);
by (rtac (add_left_commute RS trans) 1 THEN typechk_tac prems);
by (stac eqa 1);
by (rtac (add_left_commute) 1 THEN typechk_tac prems);
qed "integ_trans_lemma";
(** Natural deduction for intrel **)
goalw Integ.thy [intrel_def]
"<<x1,y1>,<x2,y2>>: intrel <-> \
\ x1: nat & y1: nat & x2: nat & y2: nat & x1#+y2 = x2#+y1";
by (Fast_tac 1);
qed "intrel_iff";
goalw Integ.thy [intrel_def]
"!!x1 x2. [| x1#+y2 = x2#+y1; x1: nat; y1: nat; x2: nat; y2: nat |] ==> \
\ <<x1,y1>,<x2,y2>>: intrel";
by (fast_tac (!claset addIs prems) 1);
qed "intrelI";
(*intrelE is hard to derive because fast_tac tries hyp_subst_tac so soon*)
goalw Integ.thy [intrel_def]
"p: intrel --> (EX x1 y1 x2 y2. \
\ p = <<x1,y1>,<x2,y2>> & x1#+y2 = x2#+y1 & \
\ x1: nat & y1: nat & x2: nat & y2: nat)";
by (Fast_tac 1);
qed "intrelE_lemma";
val [major,minor] = goal Integ.thy
"[| p: intrel; \
\ !!x1 y1 x2 y2. [| p = <<x1,y1>,<x2,y2>>; x1#+y2 = x2#+y1; \
\ x1: nat; y1: nat; x2: nat; y2: nat |] ==> Q |] \
\ ==> Q";
by (cut_facts_tac [major RS (intrelE_lemma RS mp)] 1);
by (REPEAT (eresolve_tac [asm_rl,exE,conjE,minor] 1));
qed "intrelE";
AddSIs [intrelI];
AddSEs [intrelE];
goalw Integ.thy [equiv_def, refl_def, sym_def, trans_def]
"equiv(nat*nat, intrel)";
by (fast_tac (!claset addSEs [sym, integ_trans_lemma]) 1);
qed "equiv_intrel";
Addsimps [equiv_intrel RS eq_equiv_class_iff, intrel_iff,
add_0_right, add_succ_right];
Addcongs [conj_cong];
val eq_intrelD = equiv_intrel RSN (2,eq_equiv_class);
(** znat: the injection from nat to integ **)
goalw Integ.thy [integ_def,quotient_def,znat_def]
"!!m. m : nat ==> $#m : integ";
by (fast_tac (!claset addSIs [nat_0I]) 1);
qed "znat_type";
goalw Integ.thy [znat_def]
"!!m n. [| $#m = $#n; n: nat |] ==> m=n";
by (dtac eq_intrelD 1);
by (typechk_tac [nat_0I, SigmaI]);
by (Asm_full_simp_tac 1);
qed "znat_inject";
(**** zminus: unary negation on integ ****)
goalw Integ.thy [congruent_def]
"congruent(intrel, %<x,y>. intrel``{<y,x>})";
by (safe_tac (!claset));
by (asm_full_simp_tac (!simpset addsimps add_ac) 1);
qed "zminus_congruent";
(*Resolve th against the corresponding facts for zminus*)
val zminus_ize = RSLIST [equiv_intrel, zminus_congruent];
goalw Integ.thy [integ_def,zminus_def]
"!!z. z : integ ==> $~z : integ";
by (typechk_tac [split_type, SigmaI, zminus_ize UN_equiv_class_type,
quotientI]);
qed "zminus_type";
goalw Integ.thy [integ_def,zminus_def]
"!!z w. [| $~z = $~w; z: integ; w: integ |] ==> z=w";
by (etac (zminus_ize UN_equiv_class_inject) 1);
by (safe_tac (!claset));
(*The setloop is only needed because assumptions are in the wrong order!*)
by (asm_full_simp_tac (!simpset addsimps add_ac
setloop dtac eq_intrelD) 1);
qed "zminus_inject";
goalw Integ.thy [zminus_def]
"!!x y.[| x: nat; y: nat |] ==> $~ (intrel``{<x,y>}) = intrel `` {<y,x>}";
by (asm_simp_tac (!simpset addsimps [zminus_ize UN_equiv_class, SigmaI]) 1);
qed "zminus";
goalw Integ.thy [integ_def] "!!z. z : integ ==> $~ ($~ z) = z";
by (REPEAT (eresolve_tac [quotientE,SigmaE,ssubst] 1));
by (asm_simp_tac (!simpset addsimps [zminus]) 1);
qed "zminus_zminus";
goalw Integ.thy [integ_def, znat_def] "$~ ($#0) = $#0";
by (simp_tac (!simpset addsimps [zminus]) 1);
qed "zminus_0";
(**** znegative: the test for negative integers ****)
(*No natural number is negative!*)
goalw Integ.thy [znegative_def, znat_def] "~ znegative($# n)";
by (safe_tac (!claset));
by (dres_inst_tac [("psi", "?lhs=?rhs")] asm_rl 1);
by (dres_inst_tac [("psi", "?lhs<?rhs")] asm_rl 1);
by (fast_tac (!claset addss
(!simpset addsimps [add_le_self2 RS le_imp_not_lt])) 1);
qed "not_znegative_znat";
goalw Integ.thy [znegative_def, znat_def]
"!!n. n: nat ==> znegative($~ $# succ(n))";
by (asm_simp_tac (!simpset addsimps [zminus]) 1);
by (REPEAT
(ares_tac [refl, exI, conjI, nat_0_le,
refl RS intrelI RS imageI, consI1, nat_0I, nat_succI] 1));
qed "znegative_zminus_znat";
(**** zmagnitude: magnitide of an integer, as a natural number ****)
goalw Integ.thy [congruent_def]
"congruent(intrel, %<x,y>. (y#-x) #+ (x#-y))";
by (safe_tac (!claset));
by (ALLGOALS Asm_simp_tac);
by (etac rev_mp 1);
by (res_inst_tac [("m","x1"),("n","y1")] diff_induct 1 THEN
REPEAT (assume_tac 1));
by (Asm_simp_tac 3);
by (asm_simp_tac (*this one's very sensitive to order of rewrites*)
(!simpset delsimps [add_succ_right]
addsimps [diff_add_inverse,diff_add_0]) 2);
by (Asm_simp_tac 1);
by (rtac impI 1);
by (etac subst 1);
by (res_inst_tac [("m1","x")] (add_commute RS ssubst) 1 THEN
REPEAT (assume_tac 1));
by (asm_simp_tac (!simpset addsimps [diff_add_inverse, diff_add_0]) 1);
qed "zmagnitude_congruent";
(*Resolve th against the corresponding facts for zmagnitude*)
val zmagnitude_ize = RSLIST [equiv_intrel, zmagnitude_congruent];
goalw Integ.thy [integ_def,zmagnitude_def]
"!!z. z : integ ==> zmagnitude(z) : nat";
by (typechk_tac [split_type, zmagnitude_ize UN_equiv_class_type,
add_type, diff_type]);
qed "zmagnitude_type";
goalw Integ.thy [zmagnitude_def]
"!!x y. [| x: nat; y: nat |] ==> \
\ zmagnitude (intrel``{<x,y>}) = (y #- x) #+ (x #- y)";
by (asm_simp_tac
(!simpset addsimps [zmagnitude_ize UN_equiv_class, SigmaI]) 1);
qed "zmagnitude";
goalw Integ.thy [znat_def]
"!!n. n: nat ==> zmagnitude($# n) = n";
by (asm_simp_tac (!simpset addsimps [zmagnitude]) 1);
qed "zmagnitude_znat";
goalw Integ.thy [znat_def]
"!!n. n: nat ==> zmagnitude($~ $# n) = n";
by (asm_simp_tac (!simpset addsimps [zmagnitude, zminus]) 1);
qed "zmagnitude_zminus_znat";
(**** zadd: addition on integ ****)
(** Congruence property for addition **)
goalw Integ.thy [congruent2_def]
"congruent2(intrel, %z1 z2. \
\ let <x1,y1>=z1; <x2,y2>=z2 \
\ in intrel``{<x1#+x2, y1#+y2>})";
(*Proof via congruent2_commuteI seems longer*)
by (safe_tac (!claset));
by (asm_simp_tac (!simpset addsimps [add_assoc, Let_def]) 1);
(*The rest should be trivial, but rearranging terms is hard;
add_ac does not help rewriting with the assumptions.*)
by (res_inst_tac [("m1","x1a")] (add_left_commute RS ssubst) 1);
by (res_inst_tac [("m1","x2a")] (add_left_commute RS ssubst) 3);
by (typechk_tac [add_type]);
by (asm_simp_tac (!simpset addsimps [add_assoc RS sym]) 1);
qed "zadd_congruent2";
(*Resolve th against the corresponding facts for zadd*)
val zadd_ize = RSLIST [equiv_intrel, zadd_congruent2];
goalw Integ.thy [integ_def,zadd_def]
"!!z w. [| z: integ; w: integ |] ==> z $+ w : integ";
by (rtac (zadd_ize UN_equiv_class_type2) 1);
by (simp_tac (!simpset addsimps [Let_def]) 3);
by (REPEAT (ares_tac [split_type, add_type, quotientI, SigmaI] 1));
qed "zadd_type";
goalw Integ.thy [zadd_def]
"!!x1 y1. [| x1: nat; y1: nat; x2: nat; y2: nat |] ==> \
\ (intrel``{<x1,y1>}) $+ (intrel``{<x2,y2>}) = \
\ intrel `` {<x1#+x2, y1#+y2>}";
by (asm_simp_tac (!simpset addsimps [zadd_ize UN_equiv_class2, SigmaI]) 1);
by (simp_tac (!simpset addsimps [Let_def]) 1);
qed "zadd";
goalw Integ.thy [integ_def,znat_def] "!!z. z : integ ==> $#0 $+ z = z";
by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
by (asm_simp_tac (!simpset addsimps [zadd]) 1);
qed "zadd_0";
goalw Integ.thy [integ_def]
"!!z w. [| z: integ; w: integ |] ==> $~ (z $+ w) = $~ z $+ $~ w";
by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
by (asm_simp_tac (!simpset addsimps [zminus,zadd]) 1);
qed "zminus_zadd_distrib";
goalw Integ.thy [integ_def]
"!!z w. [| z: integ; w: integ |] ==> z $+ w = w $+ z";
by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
by (asm_simp_tac (!simpset addsimps (add_ac @ [zadd])) 1);
qed "zadd_commute";
goalw Integ.thy [integ_def]
"!!z1 z2 z3. [| z1: integ; z2: integ; z3: integ |] ==> \
\ (z1 $+ z2) $+ z3 = z1 $+ (z2 $+ z3)";
by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
(*rewriting is much faster without intrel_iff, etc.*)
by (asm_simp_tac (!simpset addsimps [zadd, add_assoc]) 1);
qed "zadd_assoc";
(*For AC rewriting*)
qed_goal "zadd_left_commute" Integ.thy
"!!z1 z2 z3. [| z1:integ; z2:integ; z3: integ |] ==> \
\ z1$+(z2$+z3) = z2$+(z1$+z3)"
(fn _ => [asm_simp_tac (!simpset addsimps [zadd_assoc RS sym, zadd_commute]) 1]);
(*Integer addition is an AC operator*)
val zadd_ac = [zadd_assoc, zadd_commute, zadd_left_commute];
goalw Integ.thy [znat_def]
"!!m n. [| m: nat; n: nat |] ==> $# (m #+ n) = ($#m) $+ ($#n)";
by (asm_simp_tac (!simpset addsimps [zadd]) 1);
qed "znat_add";
goalw Integ.thy [integ_def,znat_def] "!!z. z : integ ==> z $+ ($~ z) = $#0";
by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
by (asm_simp_tac (!simpset addsimps [zminus, zadd, add_commute]) 1);
qed "zadd_zminus_inverse";
goal Integ.thy "!!z. z : integ ==> ($~ z) $+ z = $#0";
by (asm_simp_tac
(!simpset addsimps [zadd_commute, zminus_type, zadd_zminus_inverse]) 1);
qed "zadd_zminus_inverse2";
goal Integ.thy "!!z. z:integ ==> z $+ $#0 = z";
by (rtac (zadd_commute RS trans) 1);
by (REPEAT (ares_tac [znat_type, nat_0I, zadd_0] 1));
qed "zadd_0_right";
(*Need properties of $- ??? Or use $- just as an abbreviation?
[| m: nat; n: nat; m>=n |] ==> $# (m #- n) = ($#m) $- ($#n)
*)
(**** zmult: multiplication on integ ****)
(** Congruence property for multiplication **)
goal Integ.thy
"congruent2(intrel, %p1 p2. \
\ split(%x1 y1. split(%x2 y2. \
\ intrel``{<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}, p2), p1))";
by (rtac (equiv_intrel RS congruent2_commuteI) 1);
by (safe_tac (!claset));
by (ALLGOALS Asm_simp_tac);
(*Proof that zmult is congruent in one argument*)
by (asm_simp_tac
(!simpset addsimps (add_ac @ [add_mult_distrib_left RS sym])) 2);
by (asm_simp_tac
(!simpset addsimps ([add_assoc RS sym, add_mult_distrib_left RS sym])) 2);
(*Proof that zmult is commutative on representatives*)
by (asm_simp_tac (!simpset addsimps (mult_ac@add_ac)) 1);
qed "zmult_congruent2";
(*Resolve th against the corresponding facts for zmult*)
val zmult_ize = RSLIST [equiv_intrel, zmult_congruent2];
goalw Integ.thy [integ_def,zmult_def]
"!!z w. [| z: integ; w: integ |] ==> z $* w : integ";
by (REPEAT (ares_tac [zmult_ize UN_equiv_class_type2,
split_type, add_type, mult_type,
quotientI, SigmaI] 1));
qed "zmult_type";
goalw Integ.thy [zmult_def]
"!!x1 x2. [| x1: nat; y1: nat; x2: nat; y2: nat |] ==> \
\ (intrel``{<x1,y1>}) $* (intrel``{<x2,y2>}) = \
\ intrel `` {<x1#*x2 #+ y1#*y2, x1#*y2 #+ y1#*x2>}";
by (asm_simp_tac (!simpset addsimps [zmult_ize UN_equiv_class2, SigmaI]) 1);
qed "zmult";
goalw Integ.thy [integ_def,znat_def] "!!z. z : integ ==> $#0 $* z = $#0";
by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
by (asm_simp_tac (!simpset addsimps [zmult]) 1);
qed "zmult_0";
goalw Integ.thy [integ_def,znat_def]
"!!z. z : integ ==> $#1 $* z = z";
by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
by (asm_simp_tac (!simpset addsimps [zmult, add_0_right]) 1);
qed "zmult_1";
goalw Integ.thy [integ_def]
"!!z w. [| z: integ; w: integ |] ==> ($~ z) $* w = $~ (z $* w)";
by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
by (asm_simp_tac (!simpset addsimps ([zminus, zmult] @ add_ac)) 1);
qed "zmult_zminus";
goalw Integ.thy [integ_def]
"!!z w. [| z: integ; w: integ |] ==> ($~ z) $* ($~ w) = (z $* w)";
by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
by (asm_simp_tac (!simpset addsimps ([zminus, zmult] @ add_ac)) 1);
qed "zmult_zminus_zminus";
goalw Integ.thy [integ_def]
"!!z w. [| z: integ; w: integ |] ==> z $* w = w $* z";
by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
by (asm_simp_tac (!simpset addsimps ([zmult] @ add_ac @ mult_ac)) 1);
qed "zmult_commute";
goalw Integ.thy [integ_def]
"!!z1 z2 z3. [| z1: integ; z2: integ; z3: integ |] ==> \
\ (z1 $* z2) $* z3 = z1 $* (z2 $* z3)";
by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
by (asm_simp_tac
(!simpset addsimps ([zmult, add_mult_distrib_left,
add_mult_distrib] @ add_ac @ mult_ac)) 1);
qed "zmult_assoc";
(*For AC rewriting*)
qed_goal "zmult_left_commute" Integ.thy
"!!z1 z2 z3. [| z1:integ; z2:integ; z3: integ |] ==> \
\ z1$*(z2$*z3) = z2$*(z1$*z3)"
(fn _ => [asm_simp_tac (!simpset addsimps [zmult_assoc RS sym,
zmult_commute]) 1]);
(*Integer multiplication is an AC operator*)
val zmult_ac = [zmult_assoc, zmult_commute, zmult_left_commute];
goalw Integ.thy [integ_def]
"!!z1 z2 z3. [| z1: integ; z2: integ; w: integ |] ==> \
\ (z1 $+ z2) $* w = (z1 $* w) $+ (z2 $* w)";
by (REPEAT (eresolve_tac [quotientE, SigmaE, ssubst] 1));
by (asm_simp_tac (!simpset addsimps [zadd, zmult, add_mult_distrib]) 1);
by (asm_simp_tac (!simpset addsimps (add_ac @ mult_ac)) 1);
qed "zadd_zmult_distrib";
val integ_typechecks =
[znat_type, zminus_type, zmagnitude_type, zadd_type, zmult_type];
Addsimps integ_typechecks;
Addsimps [zadd_0, zadd_0_right, zadd_zminus_inverse, zadd_zminus_inverse2];
Addsimps [zminus_zminus, zminus_0];
Addsimps [zmult_0, zmult_1, zmult_zminus];
Addsimps [zmagnitude_znat, zmagnitude_zminus_znat];