(* Title: HOLCF/Adm.thy
Author: Franz Regensburger and Brian Huffman
*)
header {* Admissibility and compactness *}
theory Adm
imports Cont
begin
default_sort cpo
subsection {* Definitions *}
definition
adm :: "('a::cpo \<Rightarrow> bool) \<Rightarrow> bool" where
"adm P = (\<forall>Y. chain Y \<longrightarrow> (\<forall>i. P (Y i)) \<longrightarrow> P (\<Squnion>i. Y i))"
lemma admI:
"(\<And>Y. \<lbrakk>chain Y; \<forall>i. P (Y i)\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)) \<Longrightarrow> adm P"
unfolding adm_def by fast
lemma admD: "\<lbrakk>adm P; chain Y; \<And>i. P (Y i)\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)"
unfolding adm_def by fast
lemma admD2: "\<lbrakk>adm (\<lambda>x. \<not> P x); chain Y; P (\<Squnion>i. Y i)\<rbrakk> \<Longrightarrow> \<exists>i. P (Y i)"
unfolding adm_def by fast
lemma triv_admI: "\<forall>x. P x \<Longrightarrow> adm P"
by (rule admI, erule spec)
text {* improved admissibility introduction *}
lemma admI2:
"(\<And>Y. \<lbrakk>chain Y; \<forall>i. P (Y i); \<forall>i. \<exists>j>i. Y i \<noteq> Y j \<and> Y i \<sqsubseteq> Y j\<rbrakk>
\<Longrightarrow> P (\<Squnion>i. Y i)) \<Longrightarrow> adm P"
apply (rule admI)
apply (erule (1) increasing_chain_adm_lemma)
apply fast
done
subsection {* Admissibility on chain-finite types *}
text {* for chain-finite (easy) types every formula is admissible *}
lemma adm_chfin: "adm (P::'a::chfin \<Rightarrow> bool)"
by (rule admI, frule chfin, auto simp add: maxinch_is_thelub)
subsection {* Admissibility of special formulae and propagation *}
lemma adm_const [simp]: "adm (\<lambda>x. t)"
by (rule admI, simp)
lemma adm_conj [simp]:
"\<lbrakk>adm (\<lambda>x. P x); adm (\<lambda>x. Q x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P x \<and> Q x)"
by (fast intro: admI elim: admD)
lemma adm_all [simp]:
"(\<And>y. adm (\<lambda>x. P x y)) \<Longrightarrow> adm (\<lambda>x. \<forall>y. P x y)"
by (fast intro: admI elim: admD)
lemma adm_ball [simp]:
"(\<And>y. y \<in> A \<Longrightarrow> adm (\<lambda>x. P x y)) \<Longrightarrow> adm (\<lambda>x. \<forall>y\<in>A. P x y)"
by (fast intro: admI elim: admD)
text {* Admissibility for disjunction is hard to prove. It requires 2 lemmas. *}
lemma adm_disj_lemma1:
assumes adm: "adm P"
assumes chain: "chain Y"
assumes P: "\<forall>i. \<exists>j\<ge>i. P (Y j)"
shows "P (\<Squnion>i. Y i)"
proof -
def f \<equiv> "\<lambda>i. LEAST j. i \<le> j \<and> P (Y j)"
have chain': "chain (\<lambda>i. Y (f i))"
unfolding f_def
apply (rule chainI)
apply (rule chain_mono [OF chain])
apply (rule Least_le)
apply (rule LeastI2_ex)
apply (simp_all add: P)
done
have f1: "\<And>i. i \<le> f i" and f2: "\<And>i. P (Y (f i))"
using LeastI_ex [OF P [rule_format]] by (simp_all add: f_def)
have lub_eq: "(\<Squnion>i. Y i) = (\<Squnion>i. Y (f i))"
apply (rule below_antisym)
apply (rule lub_mono [OF chain chain'])
apply (rule chain_mono [OF chain f1])
apply (rule lub_range_mono [OF _ chain chain'])
apply clarsimp
done
show "P (\<Squnion>i. Y i)"
unfolding lub_eq using adm chain' f2 by (rule admD)
qed
lemma adm_disj_lemma2:
"\<forall>n::nat. P n \<or> Q n \<Longrightarrow> (\<forall>i. \<exists>j\<ge>i. P j) \<or> (\<forall>i. \<exists>j\<ge>i. Q j)"
apply (erule contrapos_pp)
apply (clarsimp, rename_tac a b)
apply (rule_tac x="max a b" in exI)
apply simp
done
lemma adm_disj [simp]:
"\<lbrakk>adm (\<lambda>x. P x); adm (\<lambda>x. Q x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P x \<or> Q x)"
apply (rule admI)
apply (erule adm_disj_lemma2 [THEN disjE])
apply (erule (2) adm_disj_lemma1 [THEN disjI1])
apply (erule (2) adm_disj_lemma1 [THEN disjI2])
done
lemma adm_imp [simp]:
"\<lbrakk>adm (\<lambda>x. \<not> P x); adm (\<lambda>x. Q x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P x \<longrightarrow> Q x)"
by (subst imp_conv_disj, rule adm_disj)
lemma adm_iff [simp]:
"\<lbrakk>adm (\<lambda>x. P x \<longrightarrow> Q x); adm (\<lambda>x. Q x \<longrightarrow> P x)\<rbrakk>
\<Longrightarrow> adm (\<lambda>x. P x = Q x)"
by (subst iff_conv_conj_imp, rule adm_conj)
text {* admissibility and continuity *}
lemma adm_below [simp]:
"\<lbrakk>cont (\<lambda>x. u x); cont (\<lambda>x. v x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. u x \<sqsubseteq> v x)"
apply (rule admI)
apply (simp add: cont2contlubE)
apply (rule lub_mono)
apply (erule (1) ch2ch_cont)
apply (erule (1) ch2ch_cont)
apply (erule spec)
done
lemma adm_eq [simp]:
"\<lbrakk>cont (\<lambda>x. u x); cont (\<lambda>x. v x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. u x = v x)"
by (simp add: po_eq_conv)
lemma adm_subst: "\<lbrakk>cont (\<lambda>x. t x); adm P\<rbrakk> \<Longrightarrow> adm (\<lambda>x. P (t x))"
apply (rule admI)
apply (simp add: cont2contlubE)
apply (erule admD)
apply (erule (1) ch2ch_cont)
apply (erule spec)
done
lemma adm_not_below [simp]: "cont (\<lambda>x. t x) \<Longrightarrow> adm (\<lambda>x. \<not> t x \<sqsubseteq> u)"
by (rule admI, simp add: cont2contlubE ch2ch_cont lub_below_iff)
subsection {* Compactness *}
definition
compact :: "'a::cpo \<Rightarrow> bool" where
"compact k = adm (\<lambda>x. \<not> k \<sqsubseteq> x)"
lemma compactI: "adm (\<lambda>x. \<not> k \<sqsubseteq> x) \<Longrightarrow> compact k"
unfolding compact_def .
lemma compactD: "compact k \<Longrightarrow> adm (\<lambda>x. \<not> k \<sqsubseteq> x)"
unfolding compact_def .
lemma compactI2:
"(\<And>Y. \<lbrakk>chain Y; x \<sqsubseteq> (\<Squnion>i. Y i)\<rbrakk> \<Longrightarrow> \<exists>i. x \<sqsubseteq> Y i) \<Longrightarrow> compact x"
unfolding compact_def adm_def by fast
lemma compactD2:
"\<lbrakk>compact x; chain Y; x \<sqsubseteq> (\<Squnion>i. Y i)\<rbrakk> \<Longrightarrow> \<exists>i. x \<sqsubseteq> Y i"
unfolding compact_def adm_def by fast
lemma compact_below_lub_iff:
"\<lbrakk>compact x; chain Y\<rbrakk> \<Longrightarrow> x \<sqsubseteq> (\<Squnion>i. Y i) \<longleftrightarrow> (\<exists>i. x \<sqsubseteq> Y i)"
by (fast intro: compactD2 elim: below_trans is_ub_thelub)
lemma compact_chfin [simp]: "compact (x::'a::chfin)"
by (rule compactI [OF adm_chfin])
lemma compact_imp_max_in_chain:
"\<lbrakk>chain Y; compact (\<Squnion>i. Y i)\<rbrakk> \<Longrightarrow> \<exists>i. max_in_chain i Y"
apply (drule (1) compactD2, simp)
apply (erule exE, rule_tac x=i in exI)
apply (rule max_in_chainI)
apply (rule below_antisym)
apply (erule (1) chain_mono)
apply (erule (1) below_trans [OF is_ub_thelub])
done
text {* admissibility and compactness *}
lemma adm_compact_not_below [simp]:
"\<lbrakk>compact k; cont (\<lambda>x. t x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. \<not> k \<sqsubseteq> t x)"
unfolding compact_def by (rule adm_subst)
lemma adm_neq_compact [simp]:
"\<lbrakk>compact k; cont (\<lambda>x. t x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. t x \<noteq> k)"
by (simp add: po_eq_conv)
lemma adm_compact_neq [simp]:
"\<lbrakk>compact k; cont (\<lambda>x. t x)\<rbrakk> \<Longrightarrow> adm (\<lambda>x. k \<noteq> t x)"
by (simp add: po_eq_conv)
lemma compact_UU [simp, intro]: "compact \<bottom>"
by (rule compactI, simp)
text {* Any upward-closed predicate is admissible. *}
lemma adm_upward:
assumes P: "\<And>x y. \<lbrakk>P x; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> P y"
shows "adm P"
by (rule admI, drule spec, erule P, erule is_ub_thelub)
lemmas adm_lemmas =
adm_const adm_conj adm_all adm_ball adm_disj adm_imp adm_iff
adm_below adm_eq adm_not_below
adm_compact_not_below adm_compact_neq adm_neq_compact
end