(* Title: HOLCF/ex/Fix2.thy
Author: Franz Regensburger
Show that fix is the unique least fixed-point operator.
From axioms gix1_def,gix2_def it follows that fix = gix
*)
theory Fix2
imports HOLCF
begin
axiomatization
gix :: "('a->'a)->'a" where
gix1_def: "F$(gix$F) = gix$F" and
gix2_def: "F$y=y ==> gix$F << y"
lemma lemma1: "fix = gix"
apply (rule cfun_eqI)
apply (rule antisym_less)
apply (rule fix_least)
apply (rule gix1_def)
apply (rule gix2_def)
apply (rule fix_eq [symmetric])
done
lemma lemma2: "gix$F=lub(range(%i. iterate i$F$UU))"
apply (rule lemma1 [THEN subst])
apply (rule fix_def2)
done
end