src/HOLCF/ex/Fix2.thy
author huffman
Thu, 21 Oct 2010 12:51:36 -0700
changeset 40084 23a1cfdb5acb
parent 40002 c5b5f7a3a3b1
child 40431 682d6c455670
permissions -rw-r--r--
simplify some proofs, convert to Isar style

(*  Title:      HOLCF/ex/Fix2.thy
    Author:     Franz Regensburger

Show that fix is the unique least fixed-point operator.
From axioms gix1_def,gix2_def it follows that fix = gix
*)

theory Fix2
imports HOLCF
begin

axiomatization
  gix :: "('a->'a)->'a" where
  gix1_def: "F$(gix$F) = gix$F" and
  gix2_def: "F$y=y ==> gix$F << y"


lemma lemma1: "fix = gix"
apply (rule cfun_eqI)
apply (rule antisym_less)
apply (rule fix_least)
apply (rule gix1_def)
apply (rule gix2_def)
apply (rule fix_eq [symmetric])
done

lemma lemma2: "gix$F=lub(range(%i. iterate i$F$UU))"
apply (rule lemma1 [THEN subst])
apply (rule fix_def2)
done

end